Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation

人工智能 计算机科学 图像分割 分割 医学影像学 计算机视觉 图像(数学) 模式识别(心理学) 机器学习 自然语言处理
作者
Hengyang Liu,Pengyuan Ren,Yang Yuan,Chengyun Song,Fen Luo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3492540
摘要

In semi-supervised medical image segmentation, the issue of fuzzy boundaries for segmented objects arises. With limited labeled data and the interaction of boundaries from different segmented objects, classifying segmentation boundaries becomes challenging. To mitigate this issue, we propose an uncertainty global contrastive learning (UGCL) framework. Specifically, we propose a patch filtering method and a classification entropy filtering method to provide reliable pseudo-labels for unlabelled data, while separating fuzzy boundaries and high-entropy pixel points as unreliable points. Considering that unreliable regions contain rich complementary information, we introduce an uncertainty global contrast learning method to distinguish these challenging unreliable regions, enhancing intra-class compactness and inter-class separability at the global data level. Within our optimization framework, we also integrate consistency regularization techniques and select unreliable points as targets for consistency. As demonstrated, the contrastive learning and consistency regularization applied to uncertain points enable us to glean valuable semantic information from unreliable data, which enhances segmentation accuracy. We evaluate our method on two publicly available medical image datasets and compare it with other state-of-the-art semi-supervised medical image segmentation methods, and a series of experimental results show that our method has achieved substantial improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lillian_7发布了新的文献求助10
刚刚
tjuer发布了新的文献求助10
1秒前
科研通AI2S应助隐形的baby采纳,获得10
1秒前
丘比特应助猫蒲采纳,获得10
1秒前
关关完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
彪壮的三问完成签到,获得积分10
6秒前
7秒前
gjx完成签到,获得积分10
7秒前
9秒前
GHX完成签到 ,获得积分10
9秒前
李杰发布了新的文献求助10
10秒前
10秒前
Du完成签到,获得积分10
11秒前
朱泳钦完成签到,获得积分10
11秒前
11秒前
小蘑菇发布了新的文献求助10
11秒前
可爱的函函应助天真醉波采纳,获得10
12秒前
隐形的baby完成签到,获得积分10
13秒前
14秒前
话藏心发布了新的文献求助10
16秒前
正直的雅绿完成签到,获得积分10
16秒前
科研通AI6应助safari采纳,获得30
18秒前
18秒前
平常的老头完成签到,获得积分10
19秒前
ding应助Du采纳,获得10
19秒前
朱泳钦发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
GGMJ发布了新的文献求助10
23秒前
wxyshare应助自由的中蓝采纳,获得10
25秒前
25秒前
机智灯泡发布了新的文献求助10
27秒前
27秒前
852应助百羊采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073