Modified Bott-Parker Method for Gravimetric Moho Modeling

重量分析 地质学 化学 有机化学
作者
Jinbo Li,Chuang Xu,Huiyou He,Fengshun Zhu,Yang Li,Heping Sun
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-63
标识
DOI:10.1190/geo2024-0382.1
摘要

Determining the detailed Moho topography is crucial for understanding the Earth's geodynamic processes. Inversion of the Moho depth in the frequency-domain from gravity observations is an effective tool for this purpose. However, existing inversion methods such as the Parker-Oldenburg (P-O) and Bott-Parker (B-P) methods face challenges including non-convergence and noise amplification. We have developed a modified B-P (mB-P) method to estimate the Moho depth with variable density contrast from gravity data. The proposed method casts exponential density-based Parker’s formula into the iterative continuation theoretical framework, allowing the use of an adaptive filter that has been proven effective in iterative continuation studies. This modification retains the efficiency of the B-P method while offering improved control over solution stability. Gauss-Fast Fourier Transform was adopted to improve the precision of the forward and inverse Fourier transforms in the inversion process. Furthermore, the mathematical connection between the P-O and B-P methods was established. Specifically, the B-P method acts as a low-pass filter to reduce the downward continuation effect in the P-O method and recovers the nonlinear topography through the nonlinearity of the fitting function. Synthetic inversion tests demonstrate that the proposed method achieves superior inversion accuracy compared to the P-O and B-P methods under 3% gravity observations noise and significantly outperforms the P-O method in terms of computational efficiency. We applied the mB-P method to estimate the Moho depth beneath the Tibetan Plateau using satellite gravity data and seismic data, achieving reasonable agreement between the gravimetric model and seismic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo完成签到,获得积分10
刚刚
刚刚
找寻四氢叶酸完成签到,获得积分10
1秒前
Thanatos完成签到,获得积分10
1秒前
你香发布了新的文献求助10
3秒前
FR完成签到,获得积分10
4秒前
haihuhu完成签到 ,获得积分10
6秒前
浩浩完成签到 ,获得积分10
8秒前
小绵羊发布了新的文献求助10
8秒前
guan完成签到 ,获得积分10
9秒前
木目完成签到,获得积分10
12秒前
胖宏完成签到 ,获得积分10
12秒前
bc应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
rengongzi完成签到 ,获得积分10
13秒前
moroa完成签到,获得积分10
16秒前
你香完成签到,获得积分10
16秒前
甜菜完成签到,获得积分10
16秒前
科研通AI5应助喜悦香萱采纳,获得10
16秒前
魔幻安南完成签到 ,获得积分10
17秒前
FUNG完成签到 ,获得积分10
18秒前
科研通AI5应助笨笨忘幽采纳,获得10
18秒前
爱听歌契完成签到 ,获得积分10
18秒前
19秒前
Komorebi完成签到,获得积分10
20秒前
SCI完成签到 ,获得积分10
20秒前
段段砖完成签到 ,获得积分10
23秒前
daixan89完成签到 ,获得积分10
23秒前
24秒前
流浪完成签到,获得积分10
26秒前
28秒前
yakami完成签到,获得积分20
28秒前
lx发布了新的文献求助10
29秒前
毅力鸟完成签到,获得积分10
32秒前
研友_VZG7GZ应助立军采纳,获得10
32秒前
鲤角兽完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734