已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Periodic Attention-based Stacked Sequence to Sequence framework for long-term travel time prediction

计算机科学 期限(时间) 地铁列车时刻表 序列(生物学) 长期预测 数据挖掘 组分(热力学) 深度学习 时间序列 智能交通系统 人工智能 机器学习 布线(电子设计自动化) 计算机网络 遗传学 土木工程 工程类 物理 操作系统 热力学 生物 电信 量子力学
作者
Yu Huang,Hao Dai,Vincent S. Tseng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:258: 109976-109976 被引量:12
标识
DOI:10.1016/j.knosys.2022.109976
摘要

Travel time analysis and prediction are keystones for building intelligent transportation systems in the new era, which has gained wide attention from the research community. Over the last few years, deep learning-based approaches have demonstrated the capability to predict travel time with big data. However, the existing works focused on predicting short-term travel time for paths and roads. In fact, knowing a period of long-term future travel time is a demand with important applications like traffic management and schedule routing planning. Nevertheless, studies on long-term traffic prediction are still very limited due to the complicated underlying factors. In this paper, we propose a novel deep learning-based framework named Periodic Attention-based Stacked Sequence to Sequence (PASS2S), which aims to address the long-term traffic prediction problem. PASS2S consists of two main components, namely periodic segment generation and attention-based stacked sequential prediction. To extract periodic information, we design a periodic segment generation component to capture historical periodic segments from the traffic data. To reduce the error propagation and improve long-term prediction accuracy, we propose an attention-based stacked prediction component to model long short-term and short-term dependencies from the periodic segments. We conducted a series of experiments on a real-world travel time dataset and the experimental results show that our proposed approach outperforms the state-of-the-art competing methods in terms of various metrics like MAE, RMSE, and SMAPE. To the best of our knowledge, this is the first work that considers attentive periodic historical information for solving the long-term travel time prediction with a period of the future, which has not been well studied in the research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐发布了新的文献求助10
1秒前
2秒前
susu完成签到,获得积分10
3秒前
充电宝应助南风采纳,获得10
4秒前
8秒前
恋雅颖月发布了新的文献求助10
9秒前
wangfang0228完成签到 ,获得积分10
9秒前
11秒前
zmy完成签到,获得积分20
12秒前
最佳完成签到 ,获得积分10
13秒前
15秒前
哈基米德应助mjm采纳,获得10
16秒前
16秒前
Anany完成签到,获得积分10
19秒前
benben应助老实的孤丹采纳,获得10
19秒前
19秒前
芒果不忙完成签到,获得积分10
19秒前
in完成签到 ,获得积分10
21秒前
essemmy发布了新的文献求助20
21秒前
shinysparrow应助oysp采纳,获得200
22秒前
lizzy发布了新的文献求助10
24秒前
林奕辉发布了新的文献求助10
24秒前
26秒前
29秒前
Deepthinker发布了新的文献求助50
29秒前
科研菜鸟发布了新的文献求助10
30秒前
mjm完成签到,获得积分10
31秒前
32秒前
传奇3应助lizzy采纳,获得10
32秒前
老实的孤丹完成签到,获得积分10
33秒前
yuancaix发布了新的文献求助10
34秒前
活泼的飞双完成签到,获得积分10
35秒前
晶晶完成签到 ,获得积分10
36秒前
niuma发布了新的文献求助10
39秒前
Joaquin完成签到 ,获得积分10
39秒前
默默的蜻蜓完成签到,获得积分10
40秒前
40秒前
xuli21315完成签到 ,获得积分10
41秒前
47秒前
布鲁爱思完成签到,获得积分10
47秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117307
求助须知:如何正确求助?哪些是违规求助? 3655825
关于积分的说明 11576048
捐赠科研通 3358755
什么是DOI,文献DOI怎么找? 1845205
邀请新用户注册赠送积分活动 910684
科研通“疑难数据库(出版商)”最低求助积分说明 827047