化学
磁滞
电场
原位
分析化学(期刊)
物理化学
凝聚态物理
物理
量子力学
有机化学
作者
Luca Bertoluzzi,Rebecca A. Belisle,Kevin A. Bush,Rongrong Cheacharoen,Michael D. McGehee,Brian C. O’Regan
摘要
We apply a series of transient measurements to operational perovskite solar cells of the architecture ITO/PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60/BCP/Ag, and similar cells with FA0.83MA0.17. The cells show no detectable JV hysteresis. Using photocurrent transients at applied bias we find a ∼1 ms time scale for the electric field screening by mobile ions in these cells. We confirm our interpretation of the transient measurements using a drift-diffusion model. Using Coulometry during field screening relaxation at short circuit, we determine the mobile ion concentration to be ∼1 × 1018/cm3. Using a model with one mobile ion species, the concentration and the screening time require an ion mobility of ∼3 × 10–7 cm2/(V s). As far as we know, this article gives the first direct measurement of the ion mobility and concentration in a fully functional perovskite solar cell. The measured ion mobility is 2 orders of magnitude higher than the highest estimates previously determined using perovskite solar cells and perovskite thin films, and 3 orders of magnitude higher than is frequently used in modeling hysteresis effects. We provide evidence that the fast field screening is due to mobile ions, as opposed to dark injection and trapping of electronic carriers.
科研通智能强力驱动
Strongly Powered by AbleSci AI