拉曼光谱
材料科学
硼
单同位素质量
单晶
分析化学(期刊)
氮化硼
X射线光电子能谱
Crystal(编程语言)
硼同位素
纳米技术
结晶学
化学工程
质谱法
化学
光学
物理
工程类
有机化学
色谱法
程序设计语言
计算机科学
作者
Song Liu,Rui He,Lianjie Xue,Jiahan Li,Bin Liu,James H. Edgar
标识
DOI:10.1021/acs.chemmater.8b02589
摘要
Hexagonal boron nitride (hBN) with a single boron isotope have many enhanced physical, thermal and optical properties compared to the most common hBN with the natural distribution of boron (19.9 at. % 10B and 80.1 at. % 11B). These property differences can significantly improve the device performance in applications, such as neutron detectors, nanoscale electronics, and optical components. In this study, a new method for the growth of large-scale, high-quality monoisotopic hBN single crystals, i.e., h10BN and h11BN, was developed. hBN single crystals were grown using a nickel–chromium solvent and pure boron and nitrogen sources at atmospheric pressure. The clear and colorless crystals have a maximum domain size of around 1 mm. Raman measurements demonstrate that the crystals produced with this method are pure hBN phase with low defect density, and the spectral peaks vary with the boron isotope concentrations. X-ray photoelectron spectroscopy spectra show that the B–N bond in h11BN is slightly stronger than that in h10BN. The ability to produce crystals in this manner opens the door to isotopically engineering the properties and performance of hBN devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI