脑-机接口
运动表象
脑电图
计算机科学
模态(人机交互)
脑磁图
人工智能
大脑活动与冥想
接口(物质)
模式识别(心理学)
语音识别
心理学
神经科学
最大气泡压力法
气泡
并行计算
作者
Marie‐Constance Corsi,Mario Chávez,Denis Schwartz,Laurent Hugueville,Ankit N. Khambhati,Danielle S. Bassett,Fabrizio De Vico Fallani
标识
DOI:10.1142/s0129065718500144
摘要
We adopted a fusion approach that combines features from simultaneously recorded electroencephalogram (EEG) and magnetoencephalogram (MEG) signals to improve classification performances in motor imagery-based brain-computer interfaces (BCIs). We applied our approach to a group of 15 healthy subjects and found a significant classification performance enhancement as compared to standard single-modality approaches in the alpha and beta bands. Taken together, our findings demonstrate the advantage of considering multimodal approaches as complementary tools for improving the impact of noninvasive BCIs.
科研通智能强力驱动
Strongly Powered by AbleSci AI