Soft robot perception using embedded soft sensors and recurrent neural networks

感知 机器人 计算机科学 人工神经网络 软机器人 人工智能 心理学 人机交互 计算机视觉 神经科学
作者
Thomas George Thuruthel,Benjamin Shih,Cecilia Laschi,Michael T. Tolley
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:4 (26) 被引量:528
标识
DOI:10.1126/scirobotics.aav1488
摘要

Recent work has begun to explore the design of biologically inspired soft robots composed of soft, stretchable materials for applications including the handling of delicate materials and safe interaction with humans. However, the solid-state sensors traditionally used in robotics are unable to capture the high-dimensional deformations of soft systems. Embedded soft resistive sensors have the potential to address this challenge. However, both the soft sensors-and the encasing dynamical system-often exhibit nonlinear time-variant behavior, which makes them difficult to model. In addition, the problems of sensor design, placement, and fabrication require a great deal of human input and previous knowledge. Drawing inspiration from the human perceptive system, we created a synthetic analog. Our synthetic system builds models using a redundant and unstructured sensor topology embedded in a soft actuator, a vision-based motion capture system for ground truth, and a general machine learning approach. This allows us to model an unknown soft actuated system. We demonstrate that the proposed approach is able to model the kinematics of a soft continuum actuator in real time while being robust to sensor nonlinearities and drift. In addition, we show how the same system can estimate the applied forces while interacting with external objects. The role of action in perception is also presented. This approach enables the development of force and deformation models for soft robotic systems, which can be useful for a variety of applications, including human-robot interaction, soft orthotics, and wearable robotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利觅松完成签到,获得积分10
1秒前
feng发布了新的文献求助10
2秒前
yueyue完成签到,获得积分10
2秒前
2秒前
qiqi发布了新的文献求助20
2秒前
顺利觅松发布了新的文献求助10
7秒前
小蘑菇应助健康的傲安采纳,获得10
11秒前
SciGPT应助Candy采纳,获得10
11秒前
cc完成签到,获得积分10
11秒前
科目三应助诸葛烤鸭采纳,获得10
13秒前
NexusExplorer应助qiqi采纳,获得10
14秒前
共享精神应助憨憨的小于采纳,获得10
15秒前
cocolu应助张天昊_采纳,获得20
16秒前
18秒前
18秒前
18秒前
19秒前
Akim应助橙西西采纳,获得10
19秒前
19秒前
李欣超完成签到,获得积分10
21秒前
tian发布了新的文献求助10
22秒前
王智祯完成签到,获得积分10
22秒前
22秒前
23秒前
丘比特应助一只龟龟采纳,获得10
23秒前
王欧尼发布了新的文献求助10
23秒前
saikun发布了新的文献求助10
24秒前
热心擎宇发布了新的文献求助10
24秒前
427完成签到 ,获得积分10
25秒前
Candy发布了新的文献求助10
25秒前
suian发布了新的文献求助10
25秒前
27秒前
Moonboss发布了新的文献求助10
27秒前
玥越完成签到,获得积分10
28秒前
28秒前
29秒前
30秒前
我住隔壁我姓王完成签到,获得积分10
31秒前
橙西西发布了新的文献求助10
32秒前
哦豁拐咯完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921323
求助须知:如何正确求助?哪些是违规求助? 3466148
关于积分的说明 10941623
捐赠科研通 3194721
什么是DOI,文献DOI怎么找? 1765317
邀请新用户注册赠送积分活动 855495
科研通“疑难数据库(出版商)”最低求助积分说明 794827