Machine Learning Applied to Software Testing: A Systematic Mapping Study

软件可靠性测试 计算机科学 非回归检验 测试策略 回归检验 系统集成测试 白盒测试 软件性能测试 软件建设 关键字驱动测试 甲骨文公司 软件测试 验证和确认 软件工程 机器学习 软件 手动测试 软件开发 工程类 程序设计语言 运营管理
作者
Vinícius H. S. Durelli,Rafael S. Durelli,Simone S. Borges,André Takeshi Endo,Marcelo Medeiros Eler,Diego Roberto Colombo Dias,Marcelo P. Guimarães
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 1189-1212 被引量:140
标识
DOI:10.1109/tr.2019.2892517
摘要

Software testing involves probing into the behavior of software systems to uncover faults. Most testing activities are complex and costly, so a practical strategy that has been adopted to circumvent these issues is to automate software testing. There has been a growing interest in applying machine learning (ML) to automate various software engineering activities, including testing-related ones. In this paper, we set out to review the state-of-the art of how ML has been explored to automate and streamline software testing and provide an overview of the research at the intersection of these two fields by conducting a systematic mapping study. We selected 48 primary studies. These selected studies were then categorized according to study type, testing activity, and ML algorithm employed to automate the testing activity. The results highlight the most widely used ML algorithms and identify several avenues for future research. We found that ML algorithms have been used mainly for test-case generation, refinement, and evaluation. Also, ML has been used to evaluate test oracle construction and to predict the cost of testing-related activities. The results of this paper outline the ML algorithms that are most commonly used to automate software-testing activities, helping researchers to understand the current state of research concerning ML applied to software testing. We also found that there is a need for better empirical studies examining how ML algorithms have been used to automate software-testing activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FBQZDJG2122完成签到,获得积分10
刚刚
彭于晏应助梅雨季来信采纳,获得10
1秒前
lingling发布了新的文献求助20
1秒前
宁幼萱完成签到,获得积分10
2秒前
2秒前
研友_QQC完成签到,获得积分10
2秒前
hjc完成签到,获得积分10
2秒前
Painkiller_完成签到,获得积分10
3秒前
多情的又夏完成签到 ,获得积分10
4秒前
一程完成签到 ,获得积分10
5秒前
xiuxue424完成签到,获得积分10
6秒前
finger完成签到,获得积分10
7秒前
彪壮的慕儿完成签到,获得积分20
7秒前
尹山蝶完成签到,获得积分10
9秒前
9秒前
小蘑菇应助张张张xxx采纳,获得10
10秒前
tramp应助1111采纳,获得10
11秒前
luha完成签到,获得积分10
11秒前
Shan完成签到 ,获得积分10
12秒前
13秒前
王子陌完成签到,获得积分10
13秒前
13秒前
skf发布了新的文献求助10
13秒前
haohao完成签到,获得积分10
14秒前
多多看文献完成签到,获得积分10
15秒前
城南完成签到,获得积分10
15秒前
什么钩八玩意儿完成签到,获得积分10
16秒前
隐形傲霜完成签到 ,获得积分10
16秒前
SYLH应助xixi采纳,获得10
17秒前
勤劳飞松完成签到,获得积分10
17秒前
彰化完成签到,获得积分10
17秒前
17秒前
Finch11完成签到 ,获得积分10
18秒前
音符丷完成签到 ,获得积分10
18秒前
壮观的夏蓉完成签到,获得积分10
18秒前
dou完成签到,获得积分10
18秒前
李家酥铺发布了新的文献求助20
18秒前
19秒前
浮名半生完成签到,获得积分10
19秒前
风中的双完成签到 ,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816002
求助须知:如何正确求助?哪些是违规求助? 3359464
关于积分的说明 10402883
捐赠科研通 3077360
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767743