Diagnostic Performance of Artificial Intelligence-Assisted Echocardiography in Identifying Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis

医学 肥厚性心肌病 二元分析 置信区间 诊断准确性 荟萃分析 内科学 卷积神经网络 心脏病学 人工智能 曲线下面积 心肌病 机器学习 曲线下面积 患者数据 系统回顾 训练集 放射科 相关性
作者
Shayan Shojaei,Mohammad Ali Nazari,Negar Ghasemloo,Ali Alyan,Ali Dehghan Banadaki,Seyede Parmis Maroufi,Fatemeh Ahmadpour,Samira Mehrabipari,Kaveh Hosseini,Rahul Gupta,William H. Frishman,Aronow Ws
出处
期刊:Cardiology in Review [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/crd.0000000000001172
摘要

Hypertrophic cardiomyopathy (HCM), the most common genetic cardiac disease, remains underdiagnosed most of the time due to overlapping echocardiographic characteristics and subjective interpretations. This systematic review and meta-analysis aimed to assess the diagnostic performance of artificial intelligence (AI)-assisted echocardiography interpretations for identifying HCM and to explore factors contributing to variability and validity. After a comprehensive search through various databases, eligible studies reporting diagnostic metrics such as sensitivity, specificity, or area under the curve (AUC) were included into our analyses. Data were pooled using a bivariate random-effects model, and heterogeneity was quantified with the I 2 statistic. Twenty-five studies were included into our meta-analysis. The pooled AUC for AI-based echocardiographic detection of HCM was 0.93 [95% confidence interval (CI), 0.90–0.95]. After trim-and-fill correction, the pooled AUC increased to 0.96 (95% CI, 0.93–0.97). Overall sensitivity and specificity were 0.89 (95% CI, 0.83–0.93) and 0.87 (95% CI, 0.76–0.94), respectively. Meta-regression revealed that convolutional neural network, support vector machine, and ensemble learning algorithms exhibited variable performance, with convolutional neural network-based models favoring higher sensitivity. We demonstrated that AI-based models evaluating echocardiographic data could be an accurate diagnostic tool for HCM. This highlights the potential of recent advancements to improve clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
忠诚卫士发布了新的文献求助10
1秒前
新年快乐完成签到,获得积分10
2秒前
爆米花应助ling采纳,获得10
2秒前
3秒前
tt完成签到 ,获得积分10
4秒前
是他完成签到 ,获得积分10
4秒前
0610完成签到,获得积分10
5秒前
在水一方应助Gun采纳,获得10
5秒前
李健的小迷弟应助btb采纳,获得20
5秒前
欢呼的金毛完成签到,获得积分10
5秒前
打打应助幸福汉堡采纳,获得10
5秒前
yuliuism应助刘瀚臻采纳,获得20
6秒前
无花果应助nannan采纳,获得10
7秒前
Lucas应助哈哈哈哈哈采纳,获得10
7秒前
9秒前
9秒前
damaaaaaa完成签到,获得积分20
11秒前
晶晶完成签到,获得积分10
12秒前
llllliu完成签到,获得积分10
13秒前
原来完成签到,获得积分20
13秒前
13秒前
14秒前
0610发布了新的文献求助10
14秒前
魏头头完成签到 ,获得积分10
15秒前
Lucas应助勤奋的听枫采纳,获得10
15秒前
斯文败类应助缓慢弼采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
勤奋尔冬完成签到 ,获得积分10
17秒前
linjunqi完成签到,获得积分10
17秒前
17秒前
科研通AI6应助123321采纳,获得10
17秒前
18秒前
wanci应助义气的灯泡采纳,获得10
18秒前
18秒前
18秒前
优雅枫叶完成签到 ,获得积分20
18秒前
18秒前
小林完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959