Enhancing AI-based diabetic retinopathy diagnosis through universal cross-camera image adaptation

作者
Sanil Joseph,Chen Xiaotian,Chi Liu,Zhuoting Zhu,Kim Ramasamy,Thulasiraj D Ravilla,Zongyuan Ge,Mingguang He
出处
期刊:BMJ open ophthalmology [BMJ]
卷期号:10 (1): e002238-e002238
标识
DOI:10.1136/bmjophth-2025-002238
摘要

Objective To evaluate the effectiveness of a deep learning-based style adaptation strategy in improving the diagnostic accuracy and cross-camera generalisability of artificial intelligence (AI) for detecting diabetic retinopathy (DR). Methods and analysis This diagnostic study involved prospective recruitment of patients aged 50 years and older attending the outpatient clinic at a tertiary eye hospital in Southern India, between 14 June and 5 August 2022. Paired macula-centred retinal images were captured using two fundus cameras: Optain Resolve (portable, automated) and Topcon NW400 (static, manual). A style adaptation model, the Style-Consistent Retinal Image Transformation Network (SCR-Net), was applied to align image styles across cameras. The AI-based DR detection model, developed using the InceptionNeXt-T architecture, was trained on images from the EyePACS data set and evaluated under three scenarios: (1) training and testing on original images (2) training and testing on SCR-Net-adapted images; and (3) training on a combined (original+adapted) data set and testing on adapted images. Diagnostic accuracy and preservation of image quality were evaluated. Results The mixed training/testing approach (scenario 3) achieved the highest diagnostic accuracy for Optain images at 79.2% (95% CI 75.9% to 82.6%) with a Cohen’s kappa of 0.893 (95% CI 0.867 to 0.917). Adapted images preserved critical diagnostic features (peak signal-to-noise ratio, 29.35; structural similarity index measure, 0.847). Style adaptation reduced false positives in Optain images while maintaining robust diagnostic performance for Topcon images, effectively addressing cross-camera variability. Conclusion Style adaptation using SCR-Net enhances the consistency and generalisability of AI-based DR detection systems by reducing false positives and maintaining robust performance across camera systems. This approach has the potential to democratise access to early DR diagnosis in underserved regions. This study was conducted at a single centre using a limited set of fundus cameras, which may affect the generalisability. Nonetheless, further validation across diverse imaging systems and clinical settings is warranted to support broader applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿洁发布了新的文献求助10
1秒前
虚幻的冷松完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
dadawang发布了新的文献求助10
4秒前
5秒前
愉快寄真完成签到,获得积分10
5秒前
5秒前
浮游应助三岁半采纳,获得10
6秒前
6秒前
刘思琪发布了新的文献求助10
6秒前
7秒前
Moses完成签到,获得积分10
8秒前
8秒前
Diana完成签到,获得积分10
8秒前
cc发布了新的文献求助10
9秒前
西红柿发布了新的文献求助10
9秒前
S1mple发布了新的文献求助10
9秒前
梦里花落声应助cloudss采纳,获得10
9秒前
聪明山芙完成签到,获得积分10
10秒前
工大机械发布了新的文献求助30
10秒前
酷波er应助minty采纳,获得20
11秒前
11秒前
传奇3应助dadawang采纳,获得10
11秒前
11秒前
铭心发布了新的文献求助30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
烟火会翻滚完成签到,获得积分10
13秒前
风浪里发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317648
求助须知:如何正确求助?哪些是违规求助? 4460126
关于积分的说明 13877368
捐赠科研通 4350368
什么是DOI,文献DOI怎么找? 2389368
邀请新用户注册赠送积分活动 1383539
关于科研通互助平台的介绍 1352917