反铁磁性
凝聚态物理
范德瓦尔斯力
铁磁性
超晶格
顺磁性
材料科学
联轴节(管道)
基态
感应耦合
过渡金属
可重入
化学
从头算量子化学方法
转变温度
磁性
磁性结构
金属-绝缘体过渡
大气温度范围
磁畴
工作(物理)
作者
Xiaotong Xu,Bei Jiang,Runze Wang,Zhibin Qiu,Shu Guo,Baiqing Lv,Ruidan Zhong
出处
期刊:Cornell University - arXiv
日期:2025-12-22
标识
DOI:10.48550/arxiv.2512.18993
摘要
Transition metal dichalcogenides (TMDs) enable magnetic property engineering via intercalation, but stoichiometry-structure-magnetism correlations remain poorly defined for Fe-intercalated $\mathrm{NbSe_2}$. Here, we report a systematic study of $\mathrm{Fe}_{x}\mathrm{NbSe_2}$ across an extended composition range $0.05 \le x \le 0.38$, synthesized via chemical vapor transport and verified by rigorous energy-dispersive X-ray spectroscopy (EDS) microanalysis. X-ray diffraction, magnetic, and transport measurements reveal an intrinsic correlation between Fe content, structural ordering, and magnetic ground states. With increasing $x$, the system undergoes a successive transition from paramagnetism to a spin-glass state, then to long-range antiferromagnetism (AFM), and ultimately to a reentrant spin-glass phase, with the transition temperatures exhibiting a non-monotonic dependence on Fe content. The maximum Néel temperature ($T_{\mathrm{N}}$ = $\mathrm{175K}$) and strongest AFM coupling occur at $x=0.25$, where Fe atoms form a well-ordered $2a_0 \times 2a_0 $ superlattice within van der Waals gaps. Beyond $x = 0.25$, the superlattice transforms or disorders, weakening Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and reducing $T_{\mathrm{N}}$ significantly. Electrical transport exhibits distinct anomalies at magnetic transition temperatures, corroborating the magnetic state evolution. Our work extends the compositional boundary of Fe-intercalated $\mathrm{NbSe_2}$, establishes precise stoichiometry-structure-magnetism correlations, and identifies structural ordering as a key tuning parameter for AFM. These findings provide a quantitative framework for engineering altermagnetic or switchable antiferromagnetic states in van der Waals materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI