kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes.

计算生物学 转录组 机器学习 人工智能 支持向量机 全基因组关联研究 基因 生物 候选基因 核(代数) 可解释性
作者
Chen Cao,Devin Kwok,Shannon Edie,Qing Li,Bowei Ding,Pathum Kossinna,Simone Campbell,Jingjing Wu,Matthew Greenberg,Quan Long
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (4) 被引量:2
标识
DOI:10.1093/bib/bbaa270
摘要

The power of genotype-phenotype association mapping studies increases greatly when contributions from multiple variants in a focal region are meaningfully aggregated. Currently, there are two popular categories of variant aggregation methods. Transcriptome-wide association studies (TWAS) represent a set of emerging methods that select variants based on their effect on gene expressions, providing pretrained linear combinations of variants for downstream association mapping. In contrast to this, kernel methods such as sequence kernel association test (SKAT) model genotypic and phenotypic variance use various kernel functions that capture genetic similarity between subjects, allowing nonlinear effects to be included. From the perspective of machine learning, these two methods cover two complementary aspects of feature engineering: feature selection/pruning and feature aggregation. Thus far, no thorough comparison has been made between these categories, and no methods exist which incorporate the advantages of TWAS- and kernel-based methods. In this work, we developed a novel method called kernel-based TWAS (kTWAS) that applies TWAS-like feature selection to a SKAT-like kernel association test, combining the strengths of both approaches. Through extensive simulations, we demonstrate that kTWAS has higher power than TWAS and multiple SKAT-based protocols, and we identify novel disease-associated genes in Wellcome Trust Case Control Consortium genotyping array data and MSSNG (Autism) sequence data. The source code for kTWAS and our simulations are available in our GitHub repository (https://github.com/theLongLab/kTWAS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌鸢完成签到,获得积分10
刚刚
刚刚
xia发布了新的文献求助10
刚刚
1秒前
1秒前
卡卡卡发布了新的文献求助10
1秒前
2秒前
郗关塚发布了新的文献求助10
2秒前
2秒前
3秒前
Yansz发布了新的文献求助10
3秒前
4秒前
4秒前
研友_gnv61n完成签到,获得积分0
4秒前
5秒前
5秒前
zjnb完成签到,获得积分10
5秒前
朱一龙发布了新的文献求助20
5秒前
wellord发布了新的文献求助10
5秒前
6秒前
十华发布了新的文献求助10
7秒前
wyk发布了新的文献求助10
7秒前
曹文鹏发布了新的文献求助10
7秒前
exing发布了新的文献求助10
8秒前
aaaaa发布了新的文献求助10
8秒前
华仔应助经道天采纳,获得30
8秒前
8秒前
请叫我风吹麦浪应助GU采纳,获得10
9秒前
cyuan应助Xion采纳,获得20
9秒前
JasonSun发布了新的文献求助10
9秒前
1111111发布了新的文献求助10
10秒前
11秒前
11秒前
iamleopeng发布了新的文献求助10
11秒前
qazplm发布了新的文献求助10
12秒前
bias完成签到,获得积分10
13秒前
watermelon发布了新的文献求助50
13秒前
16秒前
潘Pdm完成签到,获得积分10
16秒前
李锐发布了新的文献求助20
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930500
求助须知:如何正确求助?哪些是违规求助? 3475324
关于积分的说明 10986597
捐赠科研通 3205456
什么是DOI,文献DOI怎么找? 1771501
邀请新用户注册赠送积分活动 859035
科研通“疑难数据库(出版商)”最低求助积分说明 796906