食管胃十二指肠镜检查
医学
文档
人工智能
卷积神经网络
内窥镜检查
放射科
计算机科学
程序设计语言
作者
Seong Ji Choi,Mohammad Azam Khan,Hyuk Soon Choi,Jaegul Choo,Jae Min Lee,Soonwook Kwon,Bora Keum,Hoon Jai Chun
标识
DOI:10.1007/s00464-020-08236-6
摘要
Esophagogastroduodenoscopy (EGD) is generally a safe procedure, but adverse events often occur. This highlights the necessity of the quality control of EGD. Complete visualization and photo documentation of upper gastrointestinal (UGI) tracts are important measures in quality control of EGD. To evaluate these measures in large scale, we developed an AI-driven quality control system for EGD through convolutional neural networks (CNNs) using archived endoscopic images. We retrospectively collected and labeled images from 250 EGD procedures, a total of 2599 images from eight locations of the UGI tract, using the European Society of Gastrointestinal Endoscopy (ESGE) photo documentation methods. The label confirmed by five experts was considered the gold standard. We developed a CNN model for multi-class classification of EGD images to one of the eight locations and binary classification of each EGD procedure based on its completeness. Our CNN model successfully classified the EGD images into one of the eight regions of UGI tracts with 97.58% accuracy, 97.42% sensitivity, 99.66% specificity, 97.50% positive predictive value (PPV), and 99.66% negative predictive value (NPV). Our model classified the completeness of EGD with 89.20% accuracy, 89.20% sensitivity, 100.00% specificity, 100.00% PPV, and 64.94% NPV. We analyzed the credibility of our model using a probability heatmap. We constructed a CNN model that could be used in the quality control of photo documentation in EGD. Our model needs further validation with a large dataset, and we expect our model to help both endoscopists and patients by improving the quality of EGD procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI