Artificial intelligence diagnostic system predicts multiple Lugol-voiding lesions in the esophagus and patients at high risk for esophageal squamous cell carcinoma

医学 食管 食管癌 内科学 染色 放射科 癌症 病理
作者
Yohei Ikenoyama,Toshiyuki Yoshio,Junki Tokura,Sakiko Naito,Ken Namikawa,Yoshitaka Tokai,Shoichi Yoshimizu,Yusuke Horiuchi,Akiyoshi Ishiyama,Toshiaki Hirasawa,Tomohiro Tsuchida,Naoyuki Katayama,Tomohiro Tada,Junko Fujisaki
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:53 (11): 1105-1113 被引量:15
标识
DOI:10.1055/a-1334-4053
摘要

It is known that an esophagus with multiple Lugol-voiding lesions (LVLs) after iodine staining is high risk for esophageal cancer; however, it is preferable to identify high-risk cases without staining because iodine causes discomfort and prolongs examination times. This study assessed the capability of an artificial intelligence (AI) system to predict multiple LVLs from images that had not been stained with iodine as well as patients at high risk for esophageal cancer.We constructed the AI system by preparing a training set of 6634 images from white-light and narrow-band imaging in 595 patients before they underwent endoscopic examination with iodine staining. Diagnostic performance was evaluated on an independent validation dataset (667 images from 72 patients) and compared with that of 10 experienced endoscopists.The sensitivity, specificity, and accuracy of the AI system to predict multiple LVLs were 84.4 %, 70.0 %, and 76.4 %, respectively, compared with 46.9 %, 77.5 %, and 63.9 %, respectively, for the endoscopists. The AI system had significantly higher sensitivity than 9/10 experienced endoscopists. We also identified six endoscopic findings that were significantly more frequent in patients with multiple LVLs; however, the AI system had greater sensitivity than these findings for the prediction of multiple LVLs. Moreover, patients with AI-predicted multiple LVLs had significantly more cancers in the esophagus and head and neck than patients without predicted multiple LVLs.The AI system could predict multiple LVLs with high sensitivity from images without iodine staining. The system could enable endoscopists to apply iodine staining more judiciously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
加油呀完成签到,获得积分10
4秒前
5秒前
changjun完成签到,获得积分10
6秒前
luckycc发布了新的文献求助50
7秒前
HaohaoLi完成签到,获得积分10
7秒前
gong完成签到,获得积分10
7秒前
JamesPei应助西卡诺采纳,获得10
8秒前
共享精神应助俭朴书瑶采纳,获得10
8秒前
伶俐的以晴完成签到 ,获得积分10
9秒前
abc97完成签到,获得积分10
9秒前
慕青应助一裤子灰采纳,获得10
10秒前
英姑应助柔弱小之采纳,获得10
10秒前
yycc发布了新的文献求助10
11秒前
在水一方应助襄阳采纳,获得10
12秒前
13秒前
L1完成签到 ,获得积分10
14秒前
我住隔壁我姓王完成签到,获得积分10
15秒前
1111完成签到 ,获得积分10
15秒前
15秒前
热心的善愁完成签到,获得积分10
15秒前
17秒前
炙热冰夏发布了新的文献求助10
18秒前
19秒前
笑点低歌曲完成签到,获得积分10
20秒前
斯文败类应助探探采纳,获得10
20秒前
bkagyin应助华生采纳,获得10
20秒前
BettyNie完成签到 ,获得积分10
21秒前
鸡蛋灌饼完成签到,获得积分10
21秒前
Owen应助未知数采纳,获得10
22秒前
炙热冰夏完成签到,获得积分10
22秒前
温暖芸发布了新的文献求助10
24秒前
善学以致用应助淡墨采纳,获得10
24秒前
z_king_d_23发布了新的文献求助10
25秒前
林宥嘉完成签到 ,获得积分10
25秒前
25秒前
26秒前
所所应助淡定的天空采纳,获得10
26秒前
高挑的书雪发布了新的文献求助100
26秒前
VERITAS完成签到 ,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782938
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235420
捐赠科研通 3043338
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759033