EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers

脑电图 模式识别(心理学) 人工智能 大脑活动与冥想 计算机科学 心理学 神经科学
作者
Shuting Sun,Huayu Chen,Xuexiao Shao,Liangliang Liu,Xiaowei Li,Bin Hu
标识
DOI:10.1109/bibm49941.2020.9313270
摘要

This Electroencephalography (EEG)-based research is to explore the effective biomarkers for depression recognition. Resting-state EEG data were collected from 24 major depressive patients (MDD) and 29 normal controls using 128-electrode geodesic sensor net. To better identify depression, we extracted multi-type of EEG features including linear features (L), nonlinear features (NL), functional connectivity features phase lagging index (PLI) and network measures (NM) to comprehensively characterize the EEG signals in patients with MDD. And machine learning algorithms and statistical analysis were used to evaluate the EEG features. Combined multi-types features (All: L+ NL + PLI + NM) outperformed single-type features for classifying depression. Analyzing the optimal features set we found that compared to other type features, PLI occupied the largest proportion of which functional connections in intra-hemisphere were much more than that of in inter-hemisphere. In addition, when using PLI features and All features, high frequency bands (alpha, beta) could achieve obviously higher classification accuracy than low frequency bands (delta, theta). Parietal-occipital lobe in the high frequency bands had great effect in depression identification. In conclusion, combined multi-types EEG features along with a robust classifier can better distinguish depressive patients from normal controls. And intra-hemispheric functional connections might be an effective biomarker to detect depression. Hence, this paper may provide objective and potential electrophysiological characteristics in depression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心紫翠完成签到 ,获得积分10
刚刚
liiy完成签到,获得积分10
刚刚
3秒前
6秒前
不喜发布了新的文献求助10
6秒前
领导范儿应助祥瑞采纳,获得10
9秒前
Dr W完成签到 ,获得积分10
9秒前
Danny完成签到,获得积分10
15秒前
17秒前
Baboonium完成签到,获得积分10
18秒前
科研通AI2S应助怡然颦采纳,获得10
18秒前
bkagyin应助hhh采纳,获得10
18秒前
科研通AI5应助早晚采纳,获得10
21秒前
nenoaowu发布了新的文献求助10
22秒前
科研通AI5应助nenoaowu采纳,获得10
25秒前
29秒前
sc完成签到,获得积分10
30秒前
33秒前
怡然颦发布了新的文献求助10
36秒前
酷波er应助Zhy采纳,获得10
39秒前
40秒前
41秒前
41秒前
伍寒烟发布了新的文献求助10
45秒前
风的季节完成签到,获得积分0
45秒前
Luka应助不配.采纳,获得50
46秒前
47秒前
科目三应助测距开关阀采纳,获得10
47秒前
香蕉觅云应助zcz采纳,获得10
48秒前
九九九完成签到,获得积分20
49秒前
张铁柱完成签到,获得积分10
49秒前
49秒前
51秒前
诸青梦完成签到 ,获得积分10
51秒前
伍寒烟完成签到,获得积分10
53秒前
zcz完成签到,获得积分10
53秒前
54秒前
wltwb发布了新的文献求助10
54秒前
55秒前
传奇3应助mmmm采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098