Use of machine learning approach to predict depression in the elderly in China: A longitudinal study

萧条(经济学) 纵向研究 中国 心理学 精神科 人工智能 临床心理学 医学 计算机科学 地理 病理 经济 宏观经济学 考古
作者
Dai Su,Xingyu Zhang,Kevin He,Yingchun Chen
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:282: 289-298 被引量:93
标识
DOI:10.1016/j.jad.2020.12.160
摘要

Early detection of potential depression among elderly people is conducive for timely preventive intervention and clinical care to improve quality of life. Therefore, depression prediction considering sequential progression patterns in elderly needs to be further explored.We selected 1,538 elderly people from Chinese Longitudinal Healthy Longevity Study (CLHLS) wave 3-7 survey. Long short-term memory (LSTM) and six machine learning (ML) models were used to predict different depression risk factors and the depression risks in the elderly population in the next two years. Receiver operating curve (ROC) and decision curve analysis (DCA) were used to evaluate the prediction accuracy of the reference model and ML models.The area under the ROC curve (AUC) values of logistic regression with lasso regularisation (AUC=0.629, p-value=0.020) was the highest among ML models. DCA results showed that the net benefit of six ML models was similar (threshold: 0.00-0.10), the net benefit of lasso regression was the largest (threshold: 0.10-0.17 and 0.22-0.25), and the net benefit of DNN was the largest (threshold: 0.17-0.22 and 0.25-0.40). In two ML models, activities of daily living (ADL)/ instrumental ADL (IADL), self-rated health, marital status, arthritis, and number of cohabiting were the most important predictors for elderly with depression.The retrospective waves used in the LSTM model need to be further increased.The decision support system based on the proposed LSTM+ML model may be very valuable for doctors, nurses and community medical providers for early diagnosis and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AJ完成签到 ,获得积分10
2秒前
lcylidong完成签到,获得积分10
2秒前
2秒前
3秒前
自然水杯完成签到,获得积分10
3秒前
lizhiqian2024发布了新的文献求助10
4秒前
科研通AI5应助江莱采纳,获得10
4秒前
星辰大海应助hanhan采纳,获得10
4秒前
酷酷幻柏发布了新的文献求助10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
9秒前
老茗同学给老茗同学的求助进行了留言
10秒前
敏感初露完成签到,获得积分10
10秒前
情怀应助刘某采纳,获得10
12秒前
12秒前
南风发布了新的文献求助10
13秒前
完美世界应助酷酷幻柏采纳,获得10
13秒前
敏感初露发布了新的文献求助10
14秒前
华仔应助有何丿不可采纳,获得10
14秒前
韩野发布了新的文献求助10
14秒前
jasmine完成签到,获得积分10
15秒前
16秒前
17秒前
小商发布了新的文献求助10
17秒前
852应助碧蓝飞雪采纳,获得10
18秒前
完美世界应助敏感初露采纳,获得10
18秒前
18秒前
喜悦发布了新的文献求助10
18秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802475
求助须知:如何正确求助?哪些是违规求助? 3348107
关于积分的说明 10336540
捐赠科研通 3064030
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997