明胶
再生(生物学)
松质骨
甲基丙烯酰胺
粒径
生物医学工程
微流控
组织工程
自愈水凝胶
材料科学
干细胞
微球
生物物理学
纳米技术
化学
化学工程
医学
细胞生物学
工程类
复合材料
高分子化学
解剖
生物
生物化学
丙烯酰胺
聚合物
物理化学
共聚物
作者
Jiezhou Wu,Gen Li,Tingjun Ye,Guanghua Lu,Runmin Li,Lianfu Deng,Lei Wang,Ming Cai,Wenguo Cui
标识
DOI:10.1016/j.cej.2020.124715
摘要
Injection of cell-laden hydrogel microspheres is a minimally invasive method for tissue regeneration. However, microspheres are usually limited by structural heterogeneity, uneven size, low cell loading capacity, and poor cell survival rate. We devised a microfluidics synchronous cross-linked technology to obtain injectable homogenous porous microspheres of desired particle (50–400 μm) and pore (0–50 μm) size by adjusting the flow rate and concentration of gelatin methacrylamide (GelMA). The synchronous cross-linking controlled the strength of cross-linking and prevented fusion and uneven cross-linking. The freeze-dried microspheres of particle size 300 μm and pore size 50 μm rapidly adsorbed murine bone marrow-derived stem cells (BMSCs) and maintained their viability and osteogenic potential in vitro. In addition, the cell-loaded porous microspheres promoted tissue regeneration when injected locally into a murine bone defect model. Our results show that hydrogel microspheres generated by the microfluidics synchronous cross-linked technology are stable and biocompatible, and have strong regenerative potential when loaded with stem cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI