光敏剂
聚集诱导发射
锚固
细菌
化学
膜
多重耐药
微生物学
光化学
荧光
生物化学
生物
抗药性
光学
心理学
物理
社会心理学
遗传学
作者
Huan Chen,Shengliang Li,Min Wu,Kenry Kenry,Zhongming Huang,Chun‐Sing Lee,Bin Liu
标识
DOI:10.1002/anie.201907343
摘要
Traditional photosensitizers (PSs) show reduced singlet oxygen (1 O2 ) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non-targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water-dispersible membrane anchor (TBD-anchor) PS with aggregation-induced emission is designed and synthesized to generate 1 O2 on the bacterial membrane. TBD-anchor showed efficient antibacterial performance towards both Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin-resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD-anchor at a low white light dose (25 mW cm-2 ) for 10 minutes. TBD-anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug-resistant bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI