学习迁移
知识转移
计算机科学
断层(地质)
领域(数学)
传输(计算)
特征(语言学)
相关性(法律)
人工智能
传递函数
机器学习
控制工程
工程类
知识管理
语言学
哲学
数学
电气工程
地震学
并行计算
政治学
纯数学
法学
地质学
作者
Ruqiang Yan,Fei Shen,Chuang Sun,Xuefeng Chen
标识
DOI:10.1109/jsen.2019.2949057
摘要
This paper intends to provide an overview on recent development of knowledge transfer for rotary machine fault diagnosis (RMFD) by using different transfer learning techniques. After brief introduction of parameter-based, instance-based, feature-based and relevance-based knowledge transfer, the applications of knowledge transfer in RMFD are summarized from four categories: transfer between multiple working conditions, transfer between multiple locations, transfer between multiple machines, and transfer between multiple fault types. Case studies on four datasets including gears, bearing, and motor faults verified effectiveness of knowledge transfer on improving diagnostic accuracy. Meanwhile, research trends on transfer learning in the field of RMFD are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI