Modeling of changes in heat resistance of nickel-based alloys using Bayesian artificial neural networks

人工神经网络 高温合金 材料科学 工作(物理) 实验数据 工艺工程 计算机科学 生物系统 机械工程 人工智能 合金 冶金 工程类 数学 统计 生物
作者
O. V. Anoshina,Alena Trubnikova,O. B. Milder,Dmitry Tarasov,А. А. Ганеев,Andrey Tyagunov
出处
期刊:Letters on Materials [Institute for Metals Superplasticity Problems of RAS]
卷期号:10 (1): 106-111 被引量:2
标识
DOI:10.22226/2410-3535-2020-1-106-111
摘要

Resource design of gas turbine engines and installations requires extensive information about the heat resistance of nickel-based superalloys, from which the most critical parts of aircraft and marine engines, pumps of gas-oil pumping stations and power plants are made. The problems are that the data on the heat resistance obtained as a result of testing each alloy under study are quite limited. In the present paper, the task of modelling changes in the heat resistance of nickel-based superalloy on the basis of available experimental data is solved. To solve the task, the most modern approach, the neural network modeling method, was applied. The input data are chemical compositions of heat-resistant nickel-based superalloys and the values of their heat resistance obtained experimentally. The output data are the calculated values of heat resistance modeled by an artificial neural network. In the course of the work, transformations of the input data were carried out to reduce the standard deviation of the modeling of the output data. The choice of the neural network configuration was made in order to achieve the highest possible accuracy. As a result, a neural network of direct error propagation was used, with 27 neurons on the input layer, 13 neurons in the hidden layer and 1 neuron in the output layer. To validate the results of the predictions, a group of alloys with the maximum number of known experimental values of heat resistance was randomly selected before the input of data into the network. After preparing the data, selecting the configuration and training the network, the chemical compositions of the selected group were loaded and their heat resistance values were calculated. Comparison of the obtained data with the experimental data showed high efficiency of the method. As a result, data on the change of heat resistance for the studied alloys were obtained and an analytical expression describing the obtained dependences was formulated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的奇迹完成签到,获得积分10
3秒前
3秒前
3秒前
常123完成签到,获得积分20
3秒前
5秒前
hyw发布了新的文献求助10
5秒前
淡定从凝完成签到,获得积分10
5秒前
琮博完成签到,获得积分10
6秒前
怀瑾发布了新的文献求助10
6秒前
NexusExplorer应助无误采纳,获得30
7秒前
7秒前
领导范儿应助服了您采纳,获得10
9秒前
SteveRogers发布了新的文献求助30
9秒前
Gonna发布了新的文献求助10
10秒前
烧鸭饭发布了新的文献求助10
11秒前
JQing完成签到,获得积分10
12秒前
12秒前
zzh完成签到 ,获得积分10
13秒前
13秒前
wlj完成签到 ,获得积分10
14秒前
14秒前
14秒前
yuyu完成签到,获得积分10
14秒前
yahonyoyoyo发布了新的文献求助10
14秒前
dxftx完成签到,获得积分10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
ml完成签到,获得积分10
15秒前
15秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
周六八应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968957
求助须知:如何正确求助?哪些是违规求助? 4226164
关于积分的说明 13162161
捐赠科研通 4013411
什么是DOI,文献DOI怎么找? 2196043
邀请新用户注册赠送积分活动 1209436
关于科研通互助平台的介绍 1123478