Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images

人工智能 卷积神经网络 光学相干层析成像 深度学习 计算机科学 稳健性(进化) 机器学习 模式识别(心理学) 医学影像学 学习迁移 青光眼 上下文图像分类 计算机视觉 图像(数学) 医学 放射科 生物化学 化学 眼科 基因
作者
Kaveri A. Thakoor,Sharath Koorathota,Donald C. Hood,Paul Sajda
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 2456-2466 被引量:37
标识
DOI:10.1109/tbme.2020.3043215
摘要

Recent studies suggest that deep learning systems can now achieve performance on par with medical experts in diagnosis of disease. A prime example is in the field of ophthalmology, where convolutional neural networks (CNNs) have been used to detect retinal and ocular diseases. However, this type of artificial intelligence (AI) has yet to be adopted clinically due to questions regarding robustness of the algorithms to datasets collected at new clinical sites and a lack of explainability of AI-based predictions, especially relative to those of human expert counterparts. In this work, we develop CNN architectures that demonstrate robust detection of glaucoma in optical coherence tomography (OCT) images and test with concept activation vectors (TCAVs) to infer what image concepts CNNs use to generate predictions. Furthermore, we compare TCAV results to eye fixations of clinicians, to identify common decision-making features used by both AI and human experts. We find that employing fine-tuned transfer learning and CNN ensemble learning create end-to-end deep learning models with superior robustness compared to previously reported hybrid deep-learning/machine-learning models, and TCAV/eye-fixation comparison suggests the importance of three OCT report sub-images that are consistent with areas of interest fixated upon by OCT experts to detect glaucoma. The pipeline described here for evaluating CNN robustness and validating interpretable image concepts used by CNNs with eye movements of experts has the potential to help standardize the acceptance of new AI tools for use in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓佳鑫Alan应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
陈陈发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
hardhardwork应助科研通管家采纳,获得10
刚刚
静水流深发布了新的文献求助10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
宇宙万能香芋完成签到,获得积分10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
苹什么应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
hardhardwork应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
王w发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
整齐的糜完成签到,获得积分10
1秒前
2秒前
3秒前
孤海未蓝完成签到,获得积分10
4秒前
4秒前
4秒前
暴躁的帽子完成签到,获得积分10
4秒前
666完成签到 ,获得积分10
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355