Algorithms in the newsroom? News readers’ perceived credibility and selection of automated journalism

可靠性 新闻 来源可信度 公民新闻 选择(遗传算法) 质量(理念) 技术新闻 新闻媒体 计算机科学 公共关系 政治学 广告 万维网 人工智能 业务 法学 哲学 认识论
作者
Anja Wölker,Thomas Powell
出处
期刊:Journalism: Theory, Practice & Criticism [SAGE Publishing]
卷期号:22 (1): 86-103 被引量:205
标识
DOI:10.1177/1464884918757072
摘要

Automated journalism, the autonomous production of journalistic content through computer algorithms, is increasingly prominent in newsrooms. This enables the production of numerous articles, both rapidly and cheaply. Yet, how news readers perceive journalistic automation is pivotal to the industry, as, like any product, it is dependent on audience approval. As audiences cannot verify all events themselves, they need to trust journalists’ accounts, which make credibility a vital quality ascription to journalism. In turn, credibility judgments might influence audiences’ selection of automated content for their media diet. Research in this area is scarce, with existing studies focusing on national samples and with no previous research on ‘combined’ journalism – a relatively novel development where automated content is supplemented by human journalists. We use an experiment to investigate how European news readers ( N = 300) perceive different forms of automated journalism in regard to message and source credibility, and how this affects their selection behavior. Findings show that, in large part, credibility perceptions of human, automated, and combined content and source(s) may be assumed equal. Only for sports articles was automated content perceived significantly more credible than human messages. Furthermore, credibility does not mediate the likelihood of news readers to either select or avoid articles for news consumption. Findings are, among other things, explained by topic-specific factors and suggest that effects of algorithms on journalistic quality are largely indiscernible to European news readers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助沉默的凝荷采纳,获得10
3秒前
陈鹏发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
orixero应助乐观的非笑采纳,获得10
3秒前
迷路曼雁完成签到,获得积分10
4秒前
猫研院发布了新的文献求助30
5秒前
海上生明月完成签到 ,获得积分10
6秒前
6秒前
好好学习完成签到,获得积分0
8秒前
9秒前
12秒前
12秒前
领导范儿应助高手采纳,获得10
12秒前
漂亮的鸡发布了新的文献求助10
12秒前
13秒前
orixero应助冷艳的钥匙采纳,获得10
14秒前
在水一方应助zhengsubing47采纳,获得10
14秒前
三火完成签到,获得积分10
14秒前
周老师发布了新的文献求助10
15秒前
宇文三德完成签到,获得积分10
17秒前
17秒前
18秒前
wuli凯凯啊发布了新的文献求助10
18秒前
Wecple发布了新的文献求助10
19秒前
别闹闹发布了新的文献求助10
20秒前
523发布了新的文献求助10
22秒前
科研小虫发布了新的文献求助10
22秒前
23秒前
24秒前
26秒前
26秒前
yyyyyyypxxxx发布了新的文献求助30
27秒前
科研通AI2S应助Lucifer2012采纳,获得30
27秒前
yy发布了新的文献求助10
27秒前
科研通AI5应助科研小虫采纳,获得10
28秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
周老师完成签到,获得积分10
31秒前
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867305
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664362
捐赠科研通 3133875
什么是DOI,文献DOI怎么找? 1728505
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517