Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light

分解水 制氢 半导体 可见光谱 化学能 太阳能燃料 太阳能 材料科学 光电子学 光电化学电池 能量转换 氢燃料 纳米技术 光催化 化学 物理 工程类 电气工程 催化作用 电极 物理化学 生物化学 有机化学 电解质 热力学
作者
Sushil Kumar Saraswat,Dylan D. Rodene,Ram B. Gupta
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:89: 228-248 被引量:168
标识
DOI:10.1016/j.rser.2018.03.063
摘要

Water splitting technology directly stores solar energy into the chemical bonds of diatomic hydrogen to be used as a clean fuel without producing any unwanted side reactions, byproducts or environmentally polluting compounds. Semiconductor materials are needed for a photoelectrochemical (PEC) device to catalytically convert photons from sunlight into chemical energy. Materials implemented in a device for sustainable hydrogen production are required to be inexpensive, highly photo-active, chemically stable, environmentally sustainable, and have a high solar-to-hydrogen conversion efficiency. Although many semiconductor composites and nanostructures have been examined, thus far, no material satisfies all criteria of an implementable photocatalyst and many materials do not show necessary energy conversion efficiency. Materials that depicted a high efficiency often rely on the ultraviolet portion of the solar spectrum, which does not contain enough energy for the industrial utilization of PEC water splitting technologies. Focusing on the use of the visible spectrum is promising for hydrogen production. Herein, recent advancements in the activity of visible light semiconductors are presented, including both platinum and non-platinum group materials. This review touches on the latest developments in various synthesis schemes capable of achieving suitable water splitting compositions and architectures while highlighting the challenges being faced when designing visible light-active water splitting photocatalysts. Interesting advancements in the use of nanostructures for designing the next generation of catalysts will be discussed. Also, for the proper comparison of catalytic efficiencies, it is important to establish terminology that can compare data across a magnitude of experimental conditions. A notable challenge associated with the catalysis is its stability or photocorrosion, which lacks established protocols. Promising future directions for designing next generation materials are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
暖小阳完成签到,获得积分10
5秒前
蕯匿发布了新的文献求助10
6秒前
CAOHOU应助Jason采纳,获得10
7秒前
无私茗发布了新的文献求助10
8秒前
xhz完成签到,获得积分10
8秒前
hjb完成签到,获得积分10
10秒前
小刘完成签到,获得积分10
13秒前
依小米完成签到 ,获得积分10
14秒前
脆皮玉米发布了新的文献求助10
15秒前
orixero应助无私茗采纳,获得10
15秒前
善良的梦槐完成签到,获得积分10
15秒前
16秒前
Jasper应助葡萄味的果茶采纳,获得10
17秒前
丘比特应助zwy采纳,获得10
17秒前
白熊完成签到,获得积分10
17秒前
17秒前
魏伯安发布了新的文献求助10
20秒前
20秒前
21秒前
灵巧秋蝶完成签到 ,获得积分10
22秒前
研友_WnqdrL发布了新的文献求助10
23秒前
23秒前
无私茗完成签到,获得积分20
25秒前
月亮发布了新的文献求助10
26秒前
26秒前
29秒前
zwy发布了新的文献求助10
29秒前
hjb发布了新的文献求助10
30秒前
早睡无黑眼圈完成签到,获得积分10
31秒前
我是老大应助龙研采纳,获得10
31秒前
37秒前
科目三应助bioglia采纳,获得10
37秒前
今后应助程琳采纳,获得10
37秒前
于思枫完成签到,获得积分10
41秒前
Yiyyan发布了新的文献求助30
41秒前
hilbertbo完成签到,获得积分10
41秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904869
求助须知:如何正确求助?哪些是违规求助? 3449853
关于积分的说明 10859561
捐赠科研通 3175185
什么是DOI,文献DOI怎么找? 1754160
邀请新用户注册赠送积分活动 848199
科研通“疑难数据库(出版商)”最低求助积分说明 790807