Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light

分解水 制氢 半导体 可见光谱 化学能 太阳能燃料 太阳能 材料科学 光电子学 光电化学电池 能量转换 氢燃料 纳米技术 光催化 化学 物理 工程类 电气工程 催化作用 电极 物理化学 有机化学 热力学 电解质 生物化学
作者
Sushil Kumar Saraswat,Dylan D. Rodene,Ram B. Gupta
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:89: 228-248 被引量:168
标识
DOI:10.1016/j.rser.2018.03.063
摘要

Water splitting technology directly stores solar energy into the chemical bonds of diatomic hydrogen to be used as a clean fuel without producing any unwanted side reactions, byproducts or environmentally polluting compounds. Semiconductor materials are needed for a photoelectrochemical (PEC) device to catalytically convert photons from sunlight into chemical energy. Materials implemented in a device for sustainable hydrogen production are required to be inexpensive, highly photo-active, chemically stable, environmentally sustainable, and have a high solar-to-hydrogen conversion efficiency. Although many semiconductor composites and nanostructures have been examined, thus far, no material satisfies all criteria of an implementable photocatalyst and many materials do not show necessary energy conversion efficiency. Materials that depicted a high efficiency often rely on the ultraviolet portion of the solar spectrum, which does not contain enough energy for the industrial utilization of PEC water splitting technologies. Focusing on the use of the visible spectrum is promising for hydrogen production. Herein, recent advancements in the activity of visible light semiconductors are presented, including both platinum and non-platinum group materials. This review touches on the latest developments in various synthesis schemes capable of achieving suitable water splitting compositions and architectures while highlighting the challenges being faced when designing visible light-active water splitting photocatalysts. Interesting advancements in the use of nanostructures for designing the next generation of catalysts will be discussed. Also, for the proper comparison of catalytic efficiencies, it is important to establish terminology that can compare data across a magnitude of experimental conditions. A notable challenge associated with the catalysis is its stability or photocorrosion, which lacks established protocols. Promising future directions for designing next generation materials are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
曾建完成签到 ,获得积分10
2秒前
3秒前
赘婿应助儒雅巧荷采纳,获得10
4秒前
5秒前
6秒前
6秒前
6秒前
看论文发布了新的文献求助20
8秒前
杨三多应助Chenzhs采纳,获得10
10秒前
JJ完成签到,获得积分10
13秒前
潇洒一曲完成签到,获得积分10
14秒前
qingsyxuan完成签到,获得积分10
19秒前
21秒前
21秒前
11111111发布了新的文献求助10
24秒前
Ccc发布了新的文献求助10
27秒前
28秒前
看论文完成签到,获得积分10
28秒前
成子完成签到,获得积分10
29秒前
周淡念发布了新的文献求助10
29秒前
脑洞疼应助子星采纳,获得10
29秒前
小杨要努力完成签到,获得积分10
30秒前
30秒前
31秒前
研友_Z6Qrbn发布了新的文献求助10
33秒前
洪颜演发布了新的文献求助10
35秒前
西瓜汁完成签到,获得积分10
36秒前
39秒前
子星发布了新的文献求助10
44秒前
着急的青枫应助辰勃采纳,获得10
46秒前
洪颜演完成签到,获得积分10
53秒前
ZM完成签到 ,获得积分10
53秒前
浮游应助丰富的映萱采纳,获得10
53秒前
涛哥来科研完成签到 ,获得积分10
54秒前
1111发布了新的文献求助30
57秒前
曾琪尧完成签到,获得积分10
58秒前
zxh完成签到 ,获得积分10
58秒前
DC-liqingtian完成签到,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777557
求助须知:如何正确求助?哪些是违规求助? 4108857
关于积分的说明 12710461
捐赠科研通 3830618
什么是DOI,文献DOI怎么找? 2113011
邀请新用户注册赠送积分活动 1136659
关于科研通互助平台的介绍 1020646