Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features

人工智能 神秘的 深度学习 卷积神经网络 导管癌 计算机科学 原位 活检 核心活检 放射科 医学 原位癌 病理 肿瘤科 乳腺癌 癌症 内科学 气象学 替代医学 物理
作者
Bibo Shi,Lars J. Grimm,Maciej A. Mazurowski,Jay A. Baker,Jeffrey R. Marks,Lorraine King,Carlo C. Maley,E. Shelley Hwang,Joseph Y. Lo
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:15 (3): 527-534 被引量:91
标识
DOI:10.1016/j.jacr.2017.11.036
摘要

Abstract Purpose The aim of this study was to determine whether deep features extracted from digital mammograms using a pretrained deep convolutional neural network are prognostic of occult invasive disease for patients with ductal carcinoma in situ (DCIS) on core needle biopsy. Methods In this retrospective study, digital mammographic magnification views were collected for 99 subjects with DCIS at biopsy, 25 of which were subsequently upstaged to invasive cancer. A deep convolutional neural network model that was pretrained on nonmedical images (eg, animals, plants, instruments) was used as the feature extractor. Through a statistical pooling strategy, deep features were extracted at different levels of convolutional layers from the lesion areas, without sacrificing the original resolution or distorting the underlying topology. A multivariate classifier was then trained to predict which tumors contain occult invasive disease. This was compared with the performance of traditional computer vision (CV) features previously developed specifically to assess mammographic calcifications. The generalization performance was assessed using Monte Carlo cross-validation and receiver operating characteristic curve analysis. Results Deep features were able to distinguish DCIS with occult invasion from pure DCIS, with an area under the receiver operating characteristic curve of 0.70 (95% confidence interval, 0.68-0.73). This performance was comparable with the handcrafted CV features (area under the curve = 0.68; 95% confidence interval, 0.66-0.71) that were designed with prior domain knowledge. Conclusions Despite being pretrained on only nonmedical images, the deep features extracted from digital mammograms demonstrated comparable performance with handcrafted CV features for the challenging task of predicting DCIS upstaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
fzd完成签到,获得积分10
刚刚
噼里啪啦发布了新的文献求助20
2秒前
宋小雅完成签到,获得积分10
3秒前
涨知识发布了新的文献求助10
4秒前
程小柒完成签到 ,获得积分10
4秒前
ywzwszl完成签到,获得积分0
5秒前
5秒前
爱吃糖果的小象完成签到,获得积分10
5秒前
听风完成签到,获得积分10
6秒前
jiaozitop完成签到,获得积分10
6秒前
田様应助666采纳,获得10
6秒前
111完成签到,获得积分10
6秒前
lulu完成签到 ,获得积分10
7秒前
xiaoniuma完成签到,获得积分10
9秒前
罗氏集团完成签到,获得积分10
9秒前
10秒前
佳佳发布了新的文献求助10
10秒前
Driscoll完成签到 ,获得积分10
11秒前
14秒前
123发布了新的文献求助10
15秒前
xiaoniuma发布了新的文献求助10
16秒前
Mint完成签到 ,获得积分10
16秒前
依旧完成签到,获得积分10
18秒前
19秒前
19秒前
涨知识完成签到,获得积分10
20秒前
Akim应助123采纳,获得10
21秒前
mmzztt完成签到 ,获得积分10
21秒前
噼里啪啦完成签到,获得积分10
21秒前
香蕉觅云应助师震铎采纳,获得10
22秒前
温婉的谷菱完成签到,获得积分10
24秒前
25秒前
123完成签到,获得积分20
27秒前
饭饭发布了新的文献求助10
29秒前
29秒前
勤恳的书文完成签到 ,获得积分10
30秒前
DreamLover完成签到,获得积分10
30秒前
ZhaohuaXie应助dungaway采纳,获得10
32秒前
计划逃跑完成签到 ,获得积分10
34秒前
Eden完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498753
求助须知:如何正确求助?哪些是违规求助? 4595859
关于积分的说明 14450328
捐赠科研通 4528879
什么是DOI,文献DOI怎么找? 2481738
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438629