Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

计算机科学 卷积神经网络 人工智能 深度学习 编码 机器学习 原始数据 噪音(视频) 特征(语言学) 特征提取 人工神经网络 代表(政治) 数据挖掘 模式识别(心理学) 政治 基因 生物化学 图像(数学) 哲学 语言学 化学 程序设计语言 法学 政治学
作者
Rui Zhao,Ruqiang Yan,Jinjiang Wang,Kezhi Mao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:17 (2): 273-273 被引量:624
标识
DOI:10.3390/s17020273
摘要

In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的火龙果完成签到,获得积分10
刚刚
弄巷发布了新的文献求助30
刚刚
刚刚
扁舟灬发布了新的文献求助10
刚刚
渊_发布了新的文献求助10
1秒前
科研通AI5应助Raine采纳,获得10
1秒前
dudu完成签到,获得积分10
2秒前
PN_Allen完成签到 ,获得积分10
3秒前
allover完成签到,获得积分10
3秒前
可爱的茈完成签到,获得积分10
5秒前
12发布了新的文献求助10
5秒前
研友_VZG7GZ应助沫沫采纳,获得10
6秒前
6秒前
文章多多发布了新的文献求助10
6秒前
高源高源完成签到 ,获得积分10
8秒前
SYLH应助科研通管家采纳,获得20
9秒前
Orange应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
11秒前
扁舟灬完成签到,获得积分10
11秒前
123发布了新的文献求助30
11秒前
叶凡发布了新的文献求助10
12秒前
dw1g发布了新的文献求助10
13秒前
直率依珊发布了新的文献求助10
14秒前
15秒前
airsh发布了新的文献求助10
16秒前
华仔应助hhyyrrr采纳,获得10
16秒前
17秒前
18秒前
希望天下0贩的0应助Uuuu采纳,获得10
21秒前
aike完成签到,获得积分10
21秒前
22秒前
22秒前
希夷发布了新的文献求助10
22秒前
科研通AI5应助von采纳,获得30
23秒前
筱阿纯发布了新的文献求助10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803708
求助须知:如何正确求助?哪些是违规求助? 3348555
关于积分的说明 10339310
捐赠科研通 3064745
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764082