A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement

地质学 导水率 磁导率 流量(数学) 渗透(HVAC) 机械 水力学 水文学(农业) 土壤科学
作者
Giuseppe Brunetti,Jiří Šimůnek,Patrizia Piro
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:540: 1146-1161 被引量:64
标识
DOI:10.1016/j.jhydrol.2016.07.030
摘要

Abstract The increasing frequency of flooding events in urban catchments related to an increase in impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low Impact Development (LID) techniques have proven to be a viable and effective alternative by reducing stormwater runoff and increasing the infiltration and evapotranspiration capacity of urban areas. However, the lack of adequate modeling tools represents a barrier in designing and constructing such systems. This paper investigates the suitability of a mechanistic model, HYDRUS-1D, to correctly describe the hydraulic behavior of permeable pavement installed at the University of Calabria. Two different scenarios of describing the hydraulic behavior of the permeable pavement system were analyzed: the first one uses a single-porosity model for all layers of the permeable pavement; the second one uses a dual-porosity model for the base and sub-base layers. Measured and modeled month-long hydrographs were compared using the Nash-Sutcliffe efficiency ( NSE ) index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering highlighted the influence of the wear layer on the hydraulic behavior of the pavement and identified the ranges of parameters generating behavioral solutions. Reduced ranges were then used in the calibration procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for the estimation of hydraulic parameters. The best fit value for the first scenario was NSE  = 0.43; for the second scenario, it was NSE  = 0.81, indicating that the dual-porosity approach is more appropriate for describing the variably-saturated flow in the base and sub-base layers. Estimated parameters were validated using an independent, month-long set of measurements, resulting in NSE values of 0.43 and 0.86 for the first and second scenarios, respectively. The improvement in correspondence between measured and modeled hydrographs confirmed the reliability of the combination of GSA and PSO in dealing with highly dimensional optimization problems. Obtained results have demonstrated that PSO, due to its easiness of implementation and effectiveness, can represent a new and viable alternative to traditional optimization algorithms for the inverse estimation of unsaturated hydraulic properties. Finally, the results confirmed the suitability and the accuracy of HYDRUS-1D in correctly describing the hydraulic behavior of permeable pavements.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小zoe完成签到,获得积分20
1秒前
无聊的难敌完成签到 ,获得积分10
2秒前
4秒前
4秒前
顾矜应助爱撒娇的西装采纳,获得10
7秒前
薄荷心完成签到 ,获得积分10
8秒前
Rita发布了新的文献求助10
9秒前
光亮的天真完成签到 ,获得积分10
11秒前
刘丰发布了新的文献求助10
13秒前
吕嫣娆完成签到 ,获得积分10
13秒前
hala安胖胖完成签到 ,获得积分10
15秒前
17秒前
19秒前
Max7完成签到,获得积分10
19秒前
zzy完成签到,获得积分10
21秒前
22秒前
elodie发布了新的文献求助30
22秒前
oqura完成签到 ,获得积分10
23秒前
lchenbio发布了新的文献求助10
24秒前
25秒前
Remon发布了新的文献求助10
27秒前
28秒前
29秒前
ALITAOZI发布了新的文献求助10
29秒前
肥波爱吃鱼完成签到,获得积分10
32秒前
yuuki发布了新的文献求助10
33秒前
lchenbio完成签到,获得积分10
33秒前
殁177发布了新的文献求助10
34秒前
抹茶肥肠完成签到,获得积分10
40秒前
elodie完成签到,获得积分10
40秒前
阡陌完成签到,获得积分10
42秒前
百川完成签到,获得积分10
42秒前
FashionBoy应助CALCULATING采纳,获得10
45秒前
王富贵完成签到,获得积分10
51秒前
123发布了新的文献求助10
53秒前
隐形曼青应助shangtaomao采纳,获得10
58秒前
1分钟前
江海完成签到 ,获得积分10
1分钟前
1分钟前
demo完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863892
求助须知:如何正确求助?哪些是违规求助? 6396113
关于积分的说明 15649873
捐赠科研通 4978032
什么是DOI,文献DOI怎么找? 2685236
邀请新用户注册赠送积分活动 1628313
关于科研通互助平台的介绍 1586018