Prediction of renal transporter-mediated drug-drug interactions for a drug which is an OAT substrate and inhibitor using PBPK modelling

基于生理学的药代动力学模型 丙磺舒 药理学 药物与药物的相互作用 药代动力学 药品 化学 最大值 有机阴离子转运蛋白1 药物相互作用 运输机 医学 生物化学 基因
作者
Kathryn Ball,Tanguy Jamier,Yannick Parmentier,Claire Denizot,Agnes Mallier,Marylore Chenel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:106: 122-132 被引量:20
标识
DOI:10.1016/j.ejps.2017.05.055
摘要

A PBPK modelling approach was used to predict organic anion transporter (OAT) mediated drug-drug interactions involving S44121, a substrate and an inhibitor of OAT1 and OAT3. Model predictions were then compared to the results of a clinical DDI study which was carried out to investigate the interaction of S44121 with probenecid, tenofovir and ciprofloxacin. PBPK models were developed and qualified using existing clinical data, and inhibition constants were determined in vitro. The model predictions for S44121 as an OAT inhibitor were similar to the results obtained from the clinical DDI study, with no interaction observed for tenofovir or ciprofloxacin in the presence of S44121. An observed AUC ratio of 2.2 was obtained for S44121 in the presence of probenecid, which was slightly higher than the model predicted AUC ratio of 1.6. A DDI study in the monkey was also carried out for the interaction between S44121 and probenecid, since the monkey has previously been reported to be a good preclinical model for OAT-mediated DDI. However, this study highlighted a species difference in the major route of S44121 elimination between monkey (mainly hepatic metabolism) and human (mainly renal excretion of unchanged drug), rendering a comparison between the two DDI studies difficult. Overall, for S44121 the PBPK modelling approach gave a better prediction of the extent of DDI than the static predictions based on inhibitor Cmax and IC50, therefore this can be considered a potentially valuable tool within drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搬砖民工完成签到,获得积分10
1秒前
1秒前
风趣棒棒糖完成签到,获得积分20
2秒前
万能图书馆应助LucyMartinez采纳,获得10
2秒前
lavie发布了新的文献求助10
2秒前
2秒前
酶没美镁完成签到,获得积分10
3秒前
可以听见吗完成签到 ,获得积分10
3秒前
土豆地瓜完成签到,获得积分10
3秒前
大气修杰发布了新的文献求助10
4秒前
4秒前
Kris完成签到,获得积分10
4秒前
轩辕书白完成签到,获得积分10
4秒前
自信的书双完成签到,获得积分10
5秒前
慧1111111应助公司账号2采纳,获得10
5秒前
5秒前
Esther应助LWQ采纳,获得10
5秒前
5秒前
SYLH应助好宝宝采纳,获得10
6秒前
6秒前
北极星发布了新的文献求助10
6秒前
6秒前
JamesPei应助撒玉采纳,获得10
6秒前
研友_Z3342Z完成签到,获得积分10
7秒前
7秒前
圆锥香蕉应助哈哈哈哈哈采纳,获得10
7秒前
北方柔和的干姜完成签到,获得积分10
7秒前
Aokcers完成签到,获得积分10
7秒前
小阿邵完成签到 ,获得积分10
8秒前
8秒前
大脚仙完成签到,获得积分10
8秒前
冰河发布了新的文献求助10
8秒前
给你吃一个屁完成签到,获得积分10
8秒前
Aokcers发布了新的文献求助10
9秒前
姚瑶姚完成签到,获得积分10
10秒前
huahua发布了新的文献求助10
10秒前
10秒前
CipherSage应助别抢我辣条采纳,获得10
10秒前
优秀的流沙应助LucyMartinez采纳,获得150
10秒前
闫132发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914300
求助须知:如何正确求助?哪些是违规求助? 3459720
关于积分的说明 10907122
捐赠科研通 3186142
什么是DOI,文献DOI怎么找? 1761302
邀请新用户注册赠送积分活动 851949
科研通“疑难数据库(出版商)”最低求助积分说明 793105