Machine Learning Assisted Experimental Characterization of Bubble Dynamics in Gas–Solid Fluidized Beds

气泡 聚结(物理) 机械 流化床 计算机科学 分割 生物系统 计算流体力学 再现性 粒子(生态学) 液体气泡 表征(材料科学) 跟踪(教育) 人工智能 材料科学 物理 纳米技术 化学 色谱法 热力学 地质学 海洋学 天体生物学 生物 教育学 心理学
作者
Shuxian Jiang,Kaiqiao Wu,Víctor Francia,Yi Ouyang,Marc‐Olivier Coppens
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:63 (19): 8819-8832 被引量:4
标识
DOI:10.1021/acs.iecr.4c00631
摘要

This study introduces a machine learning (ML)-assisted image segmentation method for automatic bubble identification in gas-solid quasi-2D fluidized beds, offering enhanced accuracy in bubble recognition. Binary images are segmented by the ML method, and an in-house Lagrangian tracking technique is developed to track bubble evolution. The ML-assisted segmentation method requires few training data, achieves an accuracy of 98.75%, and allows for filtering out common sources of uncertainty in hydrodynamics, such as varying illumination conditions and out-of-focus regions, thus providing an efficient tool to study bubbling in a standard, consistent, and repeatable manner. In this work, the ML-assisted methodology is tested in a particularly challenging case: structured oscillating fluidized beds, where the spatial and time evolution of the bubble position, velocity, and shape are characteristics of the nucleation-propagation-rupture cycle. The new method is validated across various operational conditions and particle sizes, demonstrating versatility and effectiveness. It shows the ability to capture challenging bubbling dynamics and subtle changes in velocity and size distributions observed in beds of varying particle size. New characteristic features of oscillating beds are identified, including the effect of frequency and particle size on the bubble morphology, aspect, and shape factors and their relationship with the stability of the flow, quantified through the rate of coalescence and splitting events. This type of combination of classic analysis with the application of the ML assisted techniques provides a powerful tool to improve standardization and address the reproducibility of hydrodynamic studies, with the potential to be extended from gas-solid fluidization to other multiphase flow systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张帅奔完成签到,获得积分10
刚刚
刚刚
刚刚
李健应助They_say采纳,获得10
1秒前
兔子发布了新的文献求助10
1秒前
寒冰寒冰发布了新的文献求助10
2秒前
2秒前
专注梦之发布了新的文献求助10
2秒前
大胆秋灵发布了新的文献求助10
3秒前
3秒前
4秒前
江峰发布了新的文献求助10
4秒前
辛勤的飞绿完成签到,获得积分10
4秒前
虾乐完成签到,获得积分10
4秒前
妮妮完成签到,获得积分10
4秒前
5秒前
5秒前
ljy发布了新的文献求助10
5秒前
6秒前
7秒前
充电宝应助李乾坤采纳,获得10
8秒前
8秒前
9秒前
限定小陈发布了新的文献求助30
9秒前
小马甲应助LU采纳,获得10
9秒前
9秒前
10秒前
李知泽完成签到,获得积分10
10秒前
科研小白发布了新的文献求助10
10秒前
10秒前
VISIN完成签到,获得积分10
11秒前
ning完成签到 ,获得积分20
12秒前
catch发布了新的文献求助10
12秒前
12秒前
Prime发布了新的文献求助10
12秒前
轻松板栗完成签到,获得积分10
12秒前
Rondab应助瘦瘦爆米花采纳,获得30
13秒前
温和的开水完成签到,获得积分10
13秒前
研友_knggYn发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4748336
求助须知:如何正确求助?哪些是违规求助? 4095108
关于积分的说明 12670431
捐赠科研通 3807425
什么是DOI,文献DOI怎么找? 2101857
邀请新用户注册赠送积分活动 1127094
关于科研通互助平台的介绍 1003737