Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy

扩张型心肌病 无线电技术 磁共振成像 心脏磁共振 医学 心肌病 心脏病学 内科学 放射科 心力衰竭
作者
Jia Deng,Langtao Zhou,Yueyan Li,Ying Yu,J Zhang,Bihong Liao,Guanghua Luo,Jinwei Tian,Hong Zhou,Huifang Tang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2704-2714 被引量:2
标识
DOI:10.1016/j.acra.2024.03.032
摘要

•The diagnostic utility of machine learning algorithms utilizing radiomic features derived from CMR cine sequences was applied. •Integrating radiomics with machine learning methodologies has been established. •The accuracy of CMR image analysis, offers valuable insights for clinical diagnosis, minimizes examination risks for patients, and potentially shortens medical imaging procedures. Rationale and Objectives This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. Results In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Conclusion Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models. Clinical Relevance Statement The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures. This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
CAO应助松果采纳,获得10
刚刚
失眠醉易应助科研通管家采纳,获得20
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
ZhouYW应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得30
1秒前
ZhouYW应助科研通管家采纳,获得10
1秒前
ZhouYW应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2196512475发布了新的文献求助10
2秒前
我是老大应助PSCs采纳,获得10
4秒前
张平一完成签到 ,获得积分10
5秒前
无花果应助莫之白采纳,获得10
5秒前
likeqiao完成签到,获得积分20
6秒前
小士兵泥人完成签到,获得积分10
6秒前
梁世秀完成签到 ,获得积分10
6秒前
李爱国应助淡淡从安采纳,获得10
9秒前
哒哒哒完成签到,获得积分20
11秒前
12秒前
adefwe发布了新的文献求助10
12秒前
包容友灵完成签到,获得积分10
13秒前
FashionBoy应助布吉岛采纳,获得10
14秒前
15秒前
仙笛童神发布了新的文献求助10
15秒前
15秒前
垃圾桶完成签到,获得积分10
16秒前
mingjie完成签到,获得积分10
16秒前
秦pale发布了新的文献求助10
17秒前
秋邱发布了新的文献求助20
18秒前
18秒前
彭于晏应助Math4396采纳,获得10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150