Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy

扩张型心肌病 无线电技术 磁共振成像 心脏磁共振 医学 心肌病 心脏病学 内科学 放射科 心力衰竭
作者
Jia Deng,Langtao Zhou,Yueyan Li,Ying Yu,J Zhang,Bihong Liao,Guanghua Luo,Jinwei Tian,Hong Zhou,Huifang Tang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2704-2714 被引量:4
标识
DOI:10.1016/j.acra.2024.03.032
摘要

•The diagnostic utility of machine learning algorithms utilizing radiomic features derived from CMR cine sequences was applied. •Integrating radiomics with machine learning methodologies has been established. •The accuracy of CMR image analysis, offers valuable insights for clinical diagnosis, minimizes examination risks for patients, and potentially shortens medical imaging procedures. Rationale and Objectives This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. Results In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Conclusion Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models. Clinical Relevance Statement The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures. This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助哈理老萝卜采纳,获得10
1秒前
咕咕发布了新的文献求助10
3秒前
EadonChen发布了新的文献求助10
3秒前
小肉包完成签到,获得积分10
3秒前
3秒前
LYZH发布了新的文献求助10
3秒前
今后应助vivianfou采纳,获得10
4秒前
悦耳茗发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
勤劳妙彤发布了新的文献求助30
10秒前
情怀应助xiyue采纳,获得10
11秒前
12秒前
12秒前
13秒前
14秒前
17秒前
xuwenqian发布了新的文献求助10
17秒前
17秒前
LYZH完成签到,获得积分10
17秒前
17秒前
小马甲应助qiongqiong采纳,获得10
18秒前
旺财大哥发布了新的文献求助10
18秒前
18秒前
Jingyi发布了新的文献求助10
19秒前
19秒前
虚幻青旋发布了新的文献求助10
20秒前
脑洞疼应助申锴采纳,获得10
20秒前
科研通AI6应助EadonChen采纳,获得10
21秒前
大意的悟空完成签到 ,获得积分10
21秒前
22秒前
cloris发布了新的文献求助10
23秒前
23秒前
tangguo发布了新的文献求助10
23秒前
Lucas应助gzh采纳,获得10
23秒前
24秒前
wanci应助Li采纳,获得10
25秒前
墩墩应助轻松的茗茗采纳,获得10
25秒前
科研通AI2S应助Jingyi采纳,获得10
26秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291028
求助须知:如何正确求助?哪些是违规求助? 3818123
关于积分的说明 11957057
捐赠科研通 3461708
什么是DOI,文献DOI怎么找? 1898672
邀请新用户注册赠送积分活动 947254
科研通“疑难数据库(出版商)”最低求助积分说明 850032