A physics-informed deep learning model to reconstruct turbulent wake from random sparse data

物理 层流 唤醒 湍流 人工智能 计算机科学 机械
作者
Peixing Xie,Rui Li,Yaoran Chen,Baiyang Song,Wen‐Li Chen,Dai Zhou,Yong Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:13
标识
DOI:10.1063/5.0212298
摘要

This study develops a flexible deep learning framework aimed at reconstructing the global turbulent wakes from the randomly distributed sparse data. The framework is based on a Generative Adversarial Networks where the generator utilizes U-Net architecture and a constraint module is integrated into the training process. It is designed to overcome challenges posed by the chaotic behavior of turbulent fields, randomness in sensor layouts, and sparse sensor numbers. The efficacy of the model is validated across three high-fidelity datasets, including laminar wake behind a circular cylinder, turbulent wake behind a circular cylinder, and turbulent wake behind a square cylinder. The proposed model demonstrates the ability to accurately reconstruct flow patterns of both turbulent and laminar wakes, even utilizing merely 0.043% of the data from the target flow field. The proposed model exhibits significant generalization capability, which means that the model has a nearly independence from the distributions of sensors and a robust adaptation across the inputs with unseen sensor numbers. Ablation studies elucidate the distinct and complementary roles of each module within the model. Additionally, the behavior of the bottleneck tensor is analyzed through visualization, including comparisons with the lift coefficient, quantitative analyses and dimensionality reduction. These visualizations confirm the ability of the model to extract distinctive phase information reliably from sparse data, thereby guiding the reconstruction of global flow patterns. These findings highlight the potential of the model for applications in fluid dynamics where data is collected in a variable manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助liric采纳,获得10
刚刚
ztt发布了新的文献求助10
1秒前
Lucky发布了新的文献求助10
1秒前
大个应助杆杆采纳,获得10
1秒前
1秒前
sun发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
cherrywxc发布了新的文献求助10
4秒前
4秒前
aa发布了新的文献求助50
4秒前
4秒前
852应助happiness采纳,获得10
4秒前
乐乐应助过时的稀采纳,获得10
4秒前
花开富贵完成签到 ,获得积分10
4秒前
房雍完成签到,获得积分10
5秒前
5秒前
充电宝应助葡萄小伊ovo采纳,获得10
5秒前
nanfang发布了新的文献求助30
5秒前
余喆完成签到,获得积分10
6秒前
6秒前
自觉沛文发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Mjl完成签到,获得积分10
7秒前
CodeCraft应助平常的迎夏采纳,获得10
8秒前
琉寒发布了新的文献求助10
8秒前
8秒前
英姑应助wa采纳,获得10
9秒前
9秒前
9秒前
岳晓青完成签到,获得积分10
9秒前
zhangxq完成签到,获得积分10
9秒前
神勇难胜发布了新的文献求助10
10秒前
国泰民安完成签到,获得积分10
10秒前
yoke发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316970
求助须知:如何正确求助?哪些是违规求助? 4459426
关于积分的说明 13875166
捐赠科研通 4349392
什么是DOI,文献DOI怎么找? 2388806
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352288