清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A physics-informed deep learning model to reconstruct turbulent wake from random sparse data

物理 层流 唤醒 湍流 人工智能 计算机科学 机械
作者
Peixing Xie,Rui Li,Yaoran Chen,Baiyang Song,Wen‐Li Chen,Dai Zhou,Yong Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:2
标识
DOI:10.1063/5.0212298
摘要

This study develops a flexible deep learning framework aimed at reconstructing the global turbulent wakes from the randomly distributed sparse data. The framework is based on a Generative Adversarial Networks where the generator utilizes U-Net architecture and a constraint module is integrated into the training process. It is designed to overcome challenges posed by the chaotic behavior of turbulent fields, randomness in sensor layouts, and sparse sensor numbers. The efficacy of the model is validated across three high-fidelity datasets, including laminar wake behind a circular cylinder, turbulent wake behind a circular cylinder, and turbulent wake behind a square cylinder. The proposed model demonstrates the ability to accurately reconstruct flow patterns of both turbulent and laminar wakes, even utilizing merely 0.043% of the data from the target flow field. The proposed model exhibits significant generalization capability, which means that the model has a nearly independence from the distributions of sensors and a robust adaptation across the inputs with unseen sensor numbers. Ablation studies elucidate the distinct and complementary roles of each module within the model. Additionally, the behavior of the bottleneck tensor is analyzed through visualization, including comparisons with the lift coefficient, quantitative analyses and dimensionality reduction. These visualizations confirm the ability of the model to extract distinctive phase information reliably from sparse data, thereby guiding the reconstruction of global flow patterns. These findings highlight the potential of the model for applications in fluid dynamics where data is collected in a variable manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助聪明十三采纳,获得10
9秒前
十七完成签到 ,获得积分10
17秒前
向日葵完成签到 ,获得积分10
33秒前
45秒前
LELE完成签到 ,获得积分10
45秒前
文天发布了新的文献求助10
48秒前
wushang完成签到 ,获得积分10
55秒前
sh1ro完成签到,获得积分10
1分钟前
赛韓吧完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
annie发布了新的文献求助10
1分钟前
龙猫爱看书完成签到,获得积分10
1分钟前
小白兔完成签到 ,获得积分10
1分钟前
逆流的鱼完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
牛人完成签到,获得积分0
1分钟前
1分钟前
liuliu完成签到 ,获得积分10
2分钟前
Fiona完成签到 ,获得积分10
2分钟前
2分钟前
Microbiota发布了新的文献求助10
2分钟前
2分钟前
2分钟前
乐乐应助CC采纳,获得10
3分钟前
bo完成签到 ,获得积分10
3分钟前
善学以致用应助文天采纳,获得10
3分钟前
阿德利企鹅完成签到 ,获得积分10
3分钟前
酷波er应助日暮采纳,获得10
3分钟前
huhu完成签到,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
Connie完成签到,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626