A physics-informed deep learning model to reconstruct turbulent wake from random sparse data

物理 层流 唤醒 湍流 人工智能 计算机科学 机械
作者
Peixing Xie,Rui Li,Yaoran Chen,Baiyang Song,Wen‐Li Chen,Dai Zhou,Yong Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:13
标识
DOI:10.1063/5.0212298
摘要

This study develops a flexible deep learning framework aimed at reconstructing the global turbulent wakes from the randomly distributed sparse data. The framework is based on a Generative Adversarial Networks where the generator utilizes U-Net architecture and a constraint module is integrated into the training process. It is designed to overcome challenges posed by the chaotic behavior of turbulent fields, randomness in sensor layouts, and sparse sensor numbers. The efficacy of the model is validated across three high-fidelity datasets, including laminar wake behind a circular cylinder, turbulent wake behind a circular cylinder, and turbulent wake behind a square cylinder. The proposed model demonstrates the ability to accurately reconstruct flow patterns of both turbulent and laminar wakes, even utilizing merely 0.043% of the data from the target flow field. The proposed model exhibits significant generalization capability, which means that the model has a nearly independence from the distributions of sensors and a robust adaptation across the inputs with unseen sensor numbers. Ablation studies elucidate the distinct and complementary roles of each module within the model. Additionally, the behavior of the bottleneck tensor is analyzed through visualization, including comparisons with the lift coefficient, quantitative analyses and dimensionality reduction. These visualizations confirm the ability of the model to extract distinctive phase information reliably from sparse data, thereby guiding the reconstruction of global flow patterns. These findings highlight the potential of the model for applications in fluid dynamics where data is collected in a variable manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
starry发布了新的文献求助10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
cis2014完成签到,获得积分10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
王王应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得10
2秒前
小青椒应助Eliauk采纳,获得30
2秒前
刘窜疯完成签到 ,获得积分10
2秒前
犹豫灯泡发布了新的文献求助10
2秒前
3秒前
uu完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
8秒前
尊敬紫寒发布了新的文献求助10
8秒前
LHR发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
CipherSage应助陈曦读研版采纳,获得10
9秒前
minmi发布了新的文献求助20
10秒前
张杰完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786640
求助须知:如何正确求助?哪些是违规求助? 5695058
关于积分的说明 15470262
捐赠科研通 4915463
什么是DOI,文献DOI怎么找? 2645721
邀请新用户注册赠送积分活动 1593478
关于科研通互助平台的介绍 1547800