已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SmokeBERT: A Bidirectional Encoder Representations From Transformers–Based Model for Quantitative Smoking History Extraction From Clinical Narratives to Improve Lung Cancer Screening

作者
Yongkang Xue,Yunzheng Zhu,Luoting Zhuang,YongKyung Oh
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:9 (9): e2500223-e2500223
标识
DOI:10.1200/cci-25-00223
摘要

PURPOSE Tobacco use is a major risk factor for diseases such as cancer. Granular quantitative details of smoking (eg, pack years and years since quitting) are essential for assessing disease risk and determining eligibility for lung cancer screening (LCS). However, existing natural language processing (NLP) tools struggle to extract detailed quantitative smoking data from clinical narratives. METHODS We cross-validated four pretrained Bidirectional Encoder Representations from Transformers (BERT)–based models—BERT, BioBERT, ClinicalBERT, and MedBERT—by fine-tuning them on 90% of 3,261 sentences mentioning smoking history to extract six quantitative smoking history variables from clinical narratives. The model with the highest cross-validated micro-averaged F1 scores across most variables was selected as the final SmokeBERT model and was further fine-tuned on the 90% training data. Model performance was evaluated on a 10% holdout test set and an external validation set containing 3,191 sentences. RESULTS ClinicalBERT was selected as the final model based on cross-validation and was fine-tuned on the training data to create the SmokeBERT model. Compared with the state-of-the-art rule-based NLP model and the Generative Pre-trained Transformer Open Source Series 20 billion parameter model, SmokeBERT demonstrated superior performance in smoking data extraction (overall F1 score, holdout test: 0.97 v 0.88-0.90; external validation: 0.86 v 0.72-0.79) and in identifying LCS-eligible patients (97% v 59%-97% for ≥20 pack-years and 100% v 60%-84% for ≤15 years since quitting). CONCLUSION We developed SmokeBERT, a fine-tuned BERT-based model optimized for extracting detailed quantitative smoking histories. Future work includes evaluating performance on larger clinical data sets and developing a multilingual, language-agnostic version of SmokeBERT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZRBY完成签到,获得积分10
1秒前
Lily完成签到,获得积分10
2秒前
斯文败类应助伶俐鸿采纳,获得10
4秒前
动听衬衫完成签到 ,获得积分20
6秒前
崔嘉坤完成签到,获得积分10
7秒前
科研通AI2S应助酷炫的紫山采纳,获得10
9秒前
小张吃不胖完成签到 ,获得积分10
10秒前
崔嘉坤发布了新的文献求助10
11秒前
xiangqing完成签到 ,获得积分10
11秒前
zrm完成签到,获得积分10
14秒前
14秒前
幽默抽屉发布了新的文献求助10
15秒前
riccixuu完成签到 ,获得积分10
16秒前
充电宝应助李春鸿采纳,获得10
17秒前
17秒前
健忘的溪灵完成签到 ,获得积分10
18秒前
stuckinrain发布了新的文献求助20
20秒前
张嘉雯完成签到 ,获得积分10
21秒前
不羁发布了新的文献求助10
21秒前
夏日完成签到 ,获得积分10
22秒前
田様应助舒适焦采纳,获得30
24秒前
25秒前
ahq完成签到 ,获得积分10
25秒前
dyhhh完成签到 ,获得积分20
27秒前
浮游应助Pebble1采纳,获得10
28秒前
安然完成签到 ,获得积分10
28秒前
yu完成签到 ,获得积分10
29秒前
袁123发布了新的文献求助10
30秒前
TYG完成签到 ,获得积分10
31秒前
123study0完成签到,获得积分10
31秒前
心静听炊烟完成签到 ,获得积分10
32秒前
stuckinrain完成签到,获得积分10
33秒前
孤傲的静脉完成签到,获得积分10
34秒前
35秒前
搜集达人应助cc采纳,获得10
36秒前
37秒前
华仔应助柳叶小弯刀采纳,获得10
37秒前
为你钟情完成签到 ,获得积分10
38秒前
春山完成签到 ,获得积分10
40秒前
Pebble1完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515376
求助须知:如何正确求助?哪些是违规求助? 4608865
关于积分的说明 14513869
捐赠科研通 4545331
什么是DOI,文献DOI怎么找? 2490441
邀请新用户注册赠送积分活动 1472480
关于科研通互助平台的介绍 1444149