Towards Practical Emotion Recognition: An Unsupervised Source-Free Approach for EEG Domain Adaptation

作者
Md Niaz Imtiaz,Naimul Khan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2504.03707
摘要

Emotion recognition is crucial for advancing mental health, healthcare, and technologies like brain-computer interfaces (BCIs). However, EEG-based emotion recognition models face challenges in cross-domain applications due to the high cost of labeled data and variations in EEG signals from individual differences and recording conditions. Unsupervised domain adaptation methods typically require access to source domain data, which may not always be feasible in real-world scenarios due to privacy and computational constraints. Source-free unsupervised domain adaptation (SF-UDA) has recently emerged as a solution, enabling target domain adaptation without source data, but its application in emotion recognition remains unexplored. We propose a novel SF-UDA approach for EEG-based emotion classification across domains, introducing a multi-stage framework that enhances model adaptability without requiring source data. Our approach incorporates Dual-Loss Adaptive Regularization (DLAR) to minimize prediction discrepancies on confident samples and align predictions with expected pseudo-labels. Additionally, we introduce Localized Consistency Learning (LCL), which enforces local consistency by promoting similar predictions from reliable neighbors. These techniques together address domain shift and reduce the impact of noisy pseudo-labels, a key challenge in traditional SF-UDA models. Experiments on two widely used datasets, DEAP and SEED, demonstrate the effectiveness of our method. Our approach significantly outperforms state-of-the-art methods, achieving 65.84% accuracy when trained on DEAP and tested on SEED, and 58.99% accuracy in the reverse scenario. It excels at detecting both positive and negative emotions, making it well-suited for practical emotion recognition applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
小麦ime发布了新的文献求助10
1秒前
aloha发布了新的文献求助10
2秒前
OOK发布了新的文献求助10
2秒前
SunGuangkai发布了新的文献求助10
2秒前
wanci应助xuan采纳,获得10
2秒前
ikouyo完成签到 ,获得积分10
3秒前
7秒前
10秒前
斯文败类应助logonod采纳,获得10
10秒前
放青松完成签到,获得积分10
10秒前
11秒前
牛帮帮发布了新的文献求助10
11秒前
在水一方应助婕哥采纳,获得10
12秒前
Hello应助SunGuangkai采纳,获得10
12秒前
16秒前
nan完成签到,获得积分10
16秒前
LL完成签到 ,获得积分10
17秒前
long发布了新的文献求助10
17秒前
兴奋的从筠完成签到,获得积分20
18秒前
19秒前
外向的匕完成签到,获得积分10
20秒前
Ricky发布了新的文献求助10
20秒前
20秒前
JIUJIUGUGU发布了新的文献求助10
23秒前
24秒前
suiyi发布了新的文献求助10
26秒前
真实的小玉完成签到,获得积分10
26秒前
27秒前
27秒前
CipherSage应助虚拟的冰淇淋采纳,获得10
27秒前
小燕子发布了新的文献求助10
28秒前
啊啊发布了新的文献求助10
28秒前
31秒前
Albert完成签到,获得积分10
32秒前
田様应助小鱼同学采纳,获得10
33秒前
33秒前
34秒前
34秒前
agosion发布了新的文献求助10
34秒前
充电宝应助啊啊采纳,获得10
36秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500784
求助须知:如何正确求助?哪些是违规求助? 4597260
关于积分的说明 14458172
捐赠科研通 4530521
什么是DOI,文献DOI怎么找? 2482801
邀请新用户注册赠送积分活动 1466554
关于科研通互助平台的介绍 1439234