清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 系统工程 热力学
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzhui完成签到,获得积分10
28秒前
LX完成签到 ,获得积分10
32秒前
tong完成签到,获得积分10
39秒前
alan完成签到 ,获得积分10
1分钟前
大头完成签到 ,获得积分10
1分钟前
Air完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
yellowonion完成签到 ,获得积分10
2分钟前
重景完成签到 ,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
不良帅完成签到,获得积分10
2分钟前
可乐完成签到,获得积分10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
酷波er应助钱念波采纳,获得10
2分钟前
青出于蓝蔡完成签到,获得积分10
2分钟前
Dave完成签到,获得积分10
3分钟前
3分钟前
钱念波发布了新的文献求助10
3分钟前
蚂蚁踢大象完成签到 ,获得积分10
3分钟前
back you up应助科研通管家采纳,获得30
3分钟前
l老王完成签到 ,获得积分10
3分钟前
顾矜应助钱念波采纳,获得10
4分钟前
zhilianghui0807完成签到 ,获得积分10
4分钟前
ChencanFang完成签到,获得积分10
4分钟前
钱念波发布了新的文献求助10
4分钟前
科研通AI2S应助Anfakh采纳,获得10
4分钟前
jiangjiang完成签到 ,获得积分10
4分钟前
喂我完成签到 ,获得积分10
5分钟前
gyx完成签到 ,获得积分10
5分钟前
生信小菜鸟完成签到 ,获得积分10
5分钟前
火星上惜天完成签到 ,获得积分10
5分钟前
牟翎完成签到,获得积分10
7分钟前
7分钟前
1437594843完成签到 ,获得积分10
7分钟前
尔玉完成签到 ,获得积分10
7分钟前
pyq发布了新的文献求助10
7分钟前
pyq完成签到,获得积分10
7分钟前
负责灵萱完成签到 ,获得积分10
7分钟前
NATURECATCHER完成签到,获得积分10
7分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318383
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340