乙酰化
赖氨酸
热应力
组蛋白脱乙酰基酶
组蛋白
化学
SAP30型
细胞生物学
生物化学
生物
氨基酸
基因
动物科学
作者
Zhengting Chen,Qiutao Xu,Jing Wang,Hebo Zhao,Yaping Yue,Biao Liu,Lizhong Xiong,Yu Zhao,Dao‐Xiu Zhou
出处
期刊:Cell Reports
[Cell Press]
日期:2024-09-01
卷期号:43 (9): 114642-114642
被引量:1
标识
DOI:10.1016/j.celrep.2024.114642
摘要
Understanding molecular mechanisms of plant cellular response to heat stress will help to improve crop tolerance and yield in the global warming era. Here, we show that deacetylation of non-histone proteins mediated by cytoplasmic histone deacetylase HDA714 is required for plant tolerance to heat stress in rice. Heat stress reduces overall protein lysine acetylation, which depends on HDA714. Being induced by heat stress, HDA714 loss of function reduces, but its overexpression enhances rice tolerance to heat stress. Under heat stress, HDA714-mediated deacetylation of metabolic enzymes stimulates glycolysis. In addition, HDA714 protein is found within heat-induced stress granules (SGs), and many SG proteins are acetylated under normal temperature. HDA714 interacts with and deacetylates several SG proteins. HDA714 loss of function increases SG protein acetylation levels and impairs SG formation. Collectively, these results indicate that HDA714 responds to heat stress to deacetylate cellular proteins, control metabolic activities, stimulate SG formation, and confer heat tolerance in rice.
科研通智能强力驱动
Strongly Powered by AbleSci AI