Deep hybrid neural network-aided electromechanical impedance method for automated damage detection of lining concrete under freeze-thaw cycling

电磁干扰 结构工程 弯曲 抗弯强度 人工神经网络 结构健康监测 材料科学 计算机科学 工程类 人工智能 电磁干扰 电子工程
作者
Chuan Zhang,Qixiang Yan,Xiaolong Liao,Yunhui Qiu,Yifeng Zhang,Ping Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241259955
摘要

Cold regional tunnels extensively suffer from severe damage in concrete linings under cyclic freeze-thaw environment. Therefore, accurate detection and evaluation of cyclic freeze-thaw damage within lining concrete is of great significance to help grasp structural health state and guarantee timely maintenance. This study pioneered the application of electromechanical impedance (EMI) method to monitor the freeze-thaw damage in bended concrete beams. The mass loss and flexural strength degradation of concrete beams under two different bending loads were thoroughly assessed to quantify the evolution of cyclic freeze-thaw damage. Moreover, the conductance signatures driven by d 31 and d 33 modes were analyzed, respectively. It was found that the variation in the d 31 mode-dominated signal well agreed with the progressive damage characterized by the flexural strength degradation. The key innovation of this study is that a deep hybrid neural network DenseNet–GRU was constructed and well trained to predict the cyclic freeze-thaw damage from augmented EMI data. The results indicated that the proposed model achieved excellent performance with determination coefficients exceeding 0.997 for both bending scenarios. Additionally, DenseNet–GRU outperformed conventional baseline machine or deep learning models in prediction accuracy and noise-resistance capacity. Notably, it demonstrated good adaptability when trained with limited data samples. In summary, the proposed methodology enabled automated detection and accurate forecasting of the cyclic freeze-thaw damage in lining concrete without hand-crafted features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
holmes发布了新的文献求助10
刚刚
刚刚
1111发布了新的文献求助20
刚刚
大个应助哼哼哈嘿采纳,获得10
1秒前
丹丹丹应助nhscyhy采纳,获得10
2秒前
我是老大应助nhscyhy采纳,获得10
2秒前
liu发布了新的文献求助10
2秒前
大熊完成签到,获得积分10
3秒前
5秒前
5秒前
二愣子发布了新的文献求助10
5秒前
甜蜜的楷瑞应助饼饼采纳,获得20
6秒前
黑猫小苍发布了新的文献求助10
6秒前
id关闭了id文献求助
6秒前
7秒前
7秒前
枫30完成签到,获得积分20
8秒前
Angel完成签到 ,获得积分10
8秒前
温医第一打野完成签到,获得积分10
8秒前
spring发布了新的文献求助10
11秒前
阳光以南发布了新的文献求助10
11秒前
哼哼哈嘿发布了新的文献求助10
13秒前
平常的问雁完成签到 ,获得积分10
14秒前
15秒前
情怀应助小鱼采纳,获得10
15秒前
啵啵啵小太阳完成签到,获得积分10
15秒前
wuran发布了新的文献求助30
15秒前
包子完成签到,获得积分10
16秒前
IRVING发布了新的文献求助10
18秒前
aqiuyuehe发布了新的文献求助10
19秒前
21秒前
我爱罗发布了新的文献求助10
21秒前
22秒前
阳光以南完成签到,获得积分20
23秒前
ldy完成签到 ,获得积分10
23秒前
26秒前
11完成签到,获得积分10
28秒前
柳娅茹发布了新的文献求助10
29秒前
田様应助哼哼哈嘿采纳,获得10
30秒前
bkagyin应助马铃薯采纳,获得10
31秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062995
求助须知:如何正确求助?哪些是违规求助? 3601488
关于积分的说明 11438149
捐赠科研通 3324759
什么是DOI,文献DOI怎么找? 1827775
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997