Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,Xuejiao Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103321-103321 被引量:1
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稀饭发布了新的文献求助10
1秒前
Nzoth发布了新的文献求助10
2秒前
初空月儿发布了新的文献求助30
2秒前
科研通AI5应助yoyo采纳,获得10
3秒前
ddaa完成签到,获得积分10
3秒前
3秒前
beperfect发布了新的文献求助10
4秒前
4秒前
星河在眼里完成签到,获得积分10
4秒前
端庄斑马完成签到,获得积分20
5秒前
唐萧完成签到,获得积分10
6秒前
彭于晏应助谨慎秋珊采纳,获得10
7秒前
Hanson完成签到,获得积分10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
竹筏过海应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得100
8秒前
锅锅应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Owen应助melo采纳,获得10
10秒前
ever完成签到 ,获得积分10
10秒前
zhanyuji发布了新的文献求助10
10秒前
10秒前
11秒前
14秒前
小二郎应助川川采纳,获得10
14秒前
14秒前
天天浇水发布了新的文献求助10
14秒前
三个哈卡发布了新的文献求助10
15秒前
木木木完成签到,获得积分10
15秒前
许许完成签到,获得积分10
15秒前
隐形曼青应助龚宇采纳,获得10
16秒前
笑舞千叶发布了新的文献求助20
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391