Ensemble Learning Improves the Efficiency of Microseismic Signal Classification in Landslide Seismic Monitoring

微震 山崩 随机森林 梯度升压 Boosting(机器学习) 人工智能 支持向量机 地质学 打滑(空气动力学) 地震学 机器学习 精确性和召回率 决策树 集成学习 计算机科学 算法 工程类 航空航天工程
作者
Bingyu Xin,Zhiyong Huang,Shijie Huang,Liang Feng
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (15): 4892-4892 被引量:3
标识
DOI:10.3390/s24154892
摘要

A deep-seated landslide could release numerous microseismic signals from creep-slip movement, which includes a rock-soil slip from the slope surface and a rock-soil shear rupture in the subsurface. Machine learning can effectively enhance the classification of microseismic signals in landslide seismic monitoring and interpret the mechanical processes of landslide motion. In this paper, eight sets of triaxial seismic sensors were deployed inside the deep-seated landslide, Jiuxianping, China, and a large number of microseismic signals related to the slope movement were obtained through 1-year-long continuous monitoring. All the data were passed through the seismic event identification mode, the ratio of the long-time average and short-time average. We selected 11 days of data, manually classified 4131 data into eight categories, and created a microseismic event database. Classical machine learning algorithms and ensemble learning algorithms were tested in this paper. In order to evaluate the seismic event classification performance of each algorithmic model, we evaluated the proposed algorithms through the dimensions of the accuracy, precision, and recall of each model. The validation results demonstrated that the best performing decision tree algorithm among the classical machine learning algorithms had an accuracy of 88.75%, while the ensemble algorithms, including random forest, Gradient Boosting Trees, Extreme Gradient Boosting, and Light Gradient Boosting Machine, had an accuracy range from 93.5% to 94.2% and also achieved better results in the combined evaluation of the precision, recall, and F1 score. The specific classification tests for each microseismic event category showed the same results. The results suggested that the ensemble learning algorithms show better results compared to the classical machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Auralis完成签到 ,获得积分10
1秒前
,。应助球球了采纳,获得20
1秒前
ALin完成签到,获得积分10
2秒前
GGBOND完成签到,获得积分10
3秒前
4秒前
4秒前
fangfang发布了新的文献求助30
4秒前
6秒前
小李同学完成签到,获得积分10
8秒前
小小张发布了新的文献求助10
8秒前
想人陪的万言完成签到,获得积分10
8秒前
万能图书馆应助杨阳洋采纳,获得10
9秒前
10秒前
aaaaaa发布了新的文献求助20
10秒前
难过无血发布了新的文献求助10
10秒前
小大夫完成签到 ,获得积分10
10秒前
郑晓芳发布了新的文献求助10
10秒前
哆啦完成签到,获得积分10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
wsh071117发布了新的文献求助10
20秒前
lejunia发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
Mars发布了新的文献求助20
21秒前
21秒前
你学习了吗我学不了一点完成签到,获得积分10
23秒前
李玲玲发布了新的文献求助10
23秒前
小万发布了新的文献求助10
24秒前
26秒前
欢喜平凡发布了新的文献求助10
26秒前
田様应助亦玉采纳,获得10
27秒前
大模型应助xiaobei采纳,获得10
28秒前
30秒前
30秒前
32秒前
善学以致用应助韩达大采纳,获得10
34秒前
t忒对发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035356
求助须知:如何正确求助?哪些是违规求助? 4268471
关于积分的说明 13307103
捐赠科研通 4079070
什么是DOI,文献DOI怎么找? 2231204
邀请新用户注册赠送积分活动 1239511
关于科研通互助平台的介绍 1165307