A Novel Defect Quantification Method Utilizing Multi-Sensor Magnetic Flux Leakage Signal Fusion

漏磁 计算机科学 有限元法 信号(编程语言) 算法 电子工程 声学 工程类 电磁线圈 结构工程 电气工程 物理 程序设计语言
作者
Wenlong Liu,Lemei Ren,Guansan Tian
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (20): 6623-6623 被引量:1
标识
DOI:10.3390/s24206623
摘要

In the assessment of pipeline integrity using magnetic flux leakage (MFL) detection, it is crucial to quantify defects accurately and efficiently using MFL signals. However, in complex detection environments, traditional defect inversion methods exhibit low quantification accuracy and efficiency due to the complexity of their algorithms or excessive reliance on a priori knowledge and expert experience. To address these issues, this study presents a novel defect quantification method based on multi-sensor signal fusion (MSSF). The method employs a multi-sensor probe to fuse the MFL signals under multiple lift-off values, enhancing the diversity of defect information. This enables defect-opening profile recognition using the characteristic approximation approach (CAA). Subsequently, the MSSF method is based on a 3D magnetic dipole model and integrates the structural features of multi-sensor probes to develop an algorithm. This algorithm iteratively determines the defect depth at multiple data acquisition points within the defect region to obtain the maximum defect depth. The feasibility of the MSSF quantification method is validated through finite element simulation and physical experiments. The results demonstrate that the proposed method achieves accurate defect quantification while enhancing efficiency, with the number of iterations for each defect depth calculation point consistently requiring fewer than 15 iterations. For rectangular metal loss, perforation, and conical defects, quantification errors are less than 10%, meeting practical inspection requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸金连完成签到,获得积分10
刚刚
DQQ发布了新的文献求助10
刚刚
xiongyuan完成签到,获得积分10
刚刚
刚刚
pluto应助无极道人采纳,获得50
刚刚
镜花水月完成签到,获得积分10
2秒前
2秒前
2秒前
嘻嘻嘻完成签到,获得积分10
3秒前
负责念梦完成签到,获得积分20
4秒前
adsf完成签到,获得积分20
4秒前
SciGPT应助她是姑娘采纳,获得10
4秒前
4秒前
4秒前
yyyyyy完成签到,获得积分10
4秒前
阿刁完成签到,获得积分10
4秒前
WangVera完成签到,获得积分10
5秒前
张吉文发布了新的文献求助10
5秒前
艾欧比完成签到,获得积分10
6秒前
6秒前
大个应助江江采纳,获得20
6秒前
优雅山柏完成签到,获得积分10
6秒前
情怀应助露露子采纳,获得10
7秒前
7秒前
北海发布了新的文献求助10
7秒前
wang0626完成签到 ,获得积分0
7秒前
8秒前
laxnx完成签到,获得积分10
9秒前
9秒前
9秒前
波波完成签到 ,获得积分10
10秒前
星辰大海应助鲁万仇采纳,获得10
11秒前
11秒前
啊啊啊完成签到,获得积分10
11秒前
Vivian完成签到,获得积分10
11秒前
11秒前
Ylene发布了新的文献求助10
12秒前
12秒前
tututu97发布了新的文献求助10
12秒前
hejing完成签到 ,获得积分10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
探索化学的奥秘:电子结构方法 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179247
求助须知:如何正确求助?哪些是违规求助? 3714670
关于积分的说明 11710973
捐赠科研通 3395656
什么是DOI,文献DOI怎么找? 1862996
邀请新用户注册赠送积分活动 921504
科研通“疑难数据库(出版商)”最低求助积分说明 833299