Smartphone-Assisted Nanozyme Colorimetric Sensor Array Combined “Image Segmentation-Feature Extraction” Deep Learning for Detecting Unsaturated Fatty Acids

人工智能 萃取(化学) 分割 计算机科学 特征(语言学) 模式识别(心理学) 化学 色谱法 计算机视觉 语言学 哲学
作者
Xinyu Zhong,Yuelian Qin,Caihong Liang,Zhenwu Liang,Yunyuan Nong,Sanshan Luo,Yue Guo,Yingguo Yang,Liuyan Wei,Jinfeng Li,Meiling Zhang,Siqi Tang,Yonghong Liang,Jinxia Wu,Yeng Ming Lam,Zhiheng Su
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (10): 5167-5178 被引量:21
标识
DOI:10.1021/acssensors.4c01142
摘要

Conventional methods for detecting unsaturated fatty acids (UFAs) pose challenges for rapid analyses due to the need for complex pretreatment and expensive instruments. Here, we developed an intelligent platform for facile and low-cost analysis of UFAs by combining a smartphone-assisted colorimetric sensor array (CSA) based on MnO2 nanozymes with "image segmentation-feature extraction" deep learning (ISFE-DL). Density functional theory predictions were validated by doping experiments using Ag, Pd, and Pt, which enhanced the catalytic activity of the MnO2 nanozymes. A CSA mimicking mammalian olfactory system was constructed with the principle that UFAs competitively inhibit the oxidization of the enzyme substrate, resulting in color changes in the nanozyme-ABTS substrate system. Through linear discriminant analysis coupled with the smartphone App "Quick Viewer" that utilizes multihole parallel acquisition technology, oleic acid (OA), linoleic acid (LA), α-linolenic acid (ALA), and their mixtures were clearly discriminated; various edible vegetable oils, different camellia oils (CAO), and adulterated CAOs were also successfully distinguished. Furthermore, the ISFE-DL method was combined in multicomponent quantitative analysis. The sensing elements of the CSA (3 × 4) were individually segmented for single-hole feature extraction containing information from 38,868 images of three UFAs, thereby allowing for the extraction of more features and augmenting sample size. After training with the MobileNetV3 small model, the determination coefficients of OA, LA, and ALA were 0.9969, 0.9668, and 0.7393, respectively. The model was embedded in the smartphone App "Intelligent Analysis Master" for one-click quantification. We provide an innovative approach for intelligent and efficient qualitative and quantitative analysis of UFAs and other compounds with similar characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听谛9发布了新的文献求助10
刚刚
墨染完成签到,获得积分10
2秒前
昏睡的难破完成签到,获得积分10
2秒前
zimo完成签到,获得积分10
3秒前
3秒前
Akim应助shinn采纳,获得10
5秒前
kyf1993完成签到,获得积分10
5秒前
研友_VZG7GZ应助guzhfia采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
SciGPT应助Neal采纳,获得10
7秒前
8秒前
今后应助章丘吴彦祖采纳,获得10
8秒前
吴晨曦发布了新的文献求助10
10秒前
11秒前
keyanlv发布了新的文献求助10
11秒前
LKT完成签到,获得积分10
12秒前
12秒前
桐桐应助遥望星空采纳,获得10
13秒前
刘bait发布了新的文献求助10
13秒前
hh完成签到,获得积分10
13秒前
韩小韩关注了科研通微信公众号
13秒前
14秒前
张大泽同学完成签到,获得积分10
15秒前
查查完成签到 ,获得积分10
15秒前
11完成签到,获得积分20
15秒前
FashionBoy应助llllllll采纳,获得10
15秒前
17秒前
lsj发布了新的文献求助10
17秒前
17秒前
17秒前
Akim应助糟糕的铁锤采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
20秒前
wure10发布了新的文献求助10
21秒前
21秒前
ZG完成签到,获得积分10
21秒前
DHMO完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995