Smartphone-Assisted Nanozyme Colorimetric Sensor Array Combined “Image Segmentation-Feature Extraction” Deep Learning for Detecting Unsaturated Fatty Acids

人工智能 萃取(化学) 分割 计算机科学 特征(语言学) 模式识别(心理学) 化学 色谱法 计算机视觉 语言学 哲学
作者
Xinyu Zhong,Yuelian Qin,Caihong Liang,Zhenwu Liang,Yunyuan Nong,Sanshan Luo,Yue Guo,Yingguo Yang,Liuyan Wei,Jinfeng Li,Meiling Zhang,Siqi Tang,Yonghong Liang,Jinxia Wu,Yeng Ming Lam,Zhiheng Su
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (10): 5167-5178 被引量:14
标识
DOI:10.1021/acssensors.4c01142
摘要

Conventional methods for detecting unsaturated fatty acids (UFAs) pose challenges for rapid analyses due to the need for complex pretreatment and expensive instruments. Here, we developed an intelligent platform for facile and low-cost analysis of UFAs by combining a smartphone-assisted colorimetric sensor array (CSA) based on MnO2 nanozymes with "image segmentation-feature extraction" deep learning (ISFE-DL). Density functional theory predictions were validated by doping experiments using Ag, Pd, and Pt, which enhanced the catalytic activity of the MnO2 nanozymes. A CSA mimicking mammalian olfactory system was constructed with the principle that UFAs competitively inhibit the oxidization of the enzyme substrate, resulting in color changes in the nanozyme-ABTS substrate system. Through linear discriminant analysis coupled with the smartphone App "Quick Viewer" that utilizes multihole parallel acquisition technology, oleic acid (OA), linoleic acid (LA), α-linolenic acid (ALA), and their mixtures were clearly discriminated; various edible vegetable oils, different camellia oils (CAO), and adulterated CAOs were also successfully distinguished. Furthermore, the ISFE-DL method was combined in multicomponent quantitative analysis. The sensing elements of the CSA (3 × 4) were individually segmented for single-hole feature extraction containing information from 38,868 images of three UFAs, thereby allowing for the extraction of more features and augmenting sample size. After training with the MobileNetV3 small model, the determination coefficients of OA, LA, and ALA were 0.9969, 0.9668, and 0.7393, respectively. The model was embedded in the smartphone App "Intelligent Analysis Master" for one-click quantification. We provide an innovative approach for intelligent and efficient qualitative and quantitative analysis of UFAs and other compounds with similar characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桃花落发布了新的文献求助10
刚刚
鳗鱼契完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
GPTea应助科研通管家采纳,获得20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
rayx3x应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
小小完成签到,获得积分10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
kentonchow应助科研通管家采纳,获得30
2秒前
JamesPei应助科研通管家采纳,获得30
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
33发布了新的文献求助30
2秒前
liuliu发布了新的文献求助10
3秒前
成都虎哥完成签到,获得积分20
3秒前
weiyi完成签到,获得积分20
4秒前
4秒前
小熊发布了新的文献求助10
5秒前
5秒前
新之助完成签到,获得积分10
5秒前
7秒前
深情安青应助YNWAlxh采纳,获得10
7秒前
7秒前
7秒前
8秒前
jing发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416856
求助须知:如何正确求助?哪些是违规求助? 4532976
关于积分的说明 14137292
捐赠科研通 4448956
什么是DOI,文献DOI怎么找? 2440505
邀请新用户注册赠送积分活动 1432315
关于科研通互助平台的介绍 1409793