CrossDiff: Exploring Self-Supervised Representation of Pansharpening via Cross-Predictive Diffusion Model

人工智能 计算机科学 代表(政治) 扩散 模式识别(心理学) 计算机视觉 物理 政治 政治学 法学 热力学
作者
Yinghui Xing,Litao Qu,Shizhou Zhang,Kai Zhang,Yanning Zhang,Lorenzo Bruzzone
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5496-5509 被引量:5
标识
DOI:10.1109/tip.2024.3461476
摘要

Fusion of a panchromatic (PAN) image and corresponding multispectral (MS) image is also known as pansharpening, which aims to combine abundant spatial details of PAN and spectral information of MS images. Due to the absence of high-resolution MS images, available deep-learning-based methods usually follow the paradigm of training at reduced resolution and testing at both reduced and full resolution. When taking original MS and PAN images as inputs, they always obtain sub-optimal results due to the scale variation. In this paper, we propose to explore the self-supervised representation for pansharpening by designing a cross-predictive diffusion model, named CrossDiff. It has two-stage training. In the first stage, we introduce a cross-predictive pretext task to pre-train the UNet structure based on conditional Denoising Diffusion Probabilistic Model (DDPM). While in the second stage, the encoders of the UNets are frozen to directly extract spatial and spectral features from PAN and MS images, and only the fusion head is trained to adapt for pansharpening task. Extensive experiments show the effectiveness and superiority of the proposed model compared with state-of-the-art supervised and unsupervised methods. Besides, the cross-sensor experiments also verify the generalization ability of proposed self-supervised representation learners for other satellite datasets. Code is available at https://github.com/codgodtao/CrossDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵丹发布了新的文献求助10
1秒前
zx666完成签到,获得积分10
6秒前
SciGPT应助qty采纳,获得10
7秒前
8秒前
挽风完成签到,获得积分10
9秒前
xxk完成签到,获得积分20
9秒前
十七完成签到 ,获得积分10
10秒前
YY完成签到 ,获得积分10
10秒前
xxk发布了新的文献求助10
12秒前
追逐123完成签到 ,获得积分10
13秒前
XYZ完成签到 ,获得积分10
15秒前
笑笑丶不爱笑完成签到,获得积分10
16秒前
18秒前
豆子完成签到,获得积分10
18秒前
文静的惜雪完成签到 ,获得积分10
20秒前
Diego完成签到,获得积分10
22秒前
23秒前
qty发布了新的文献求助10
25秒前
无花果应助丛玉林采纳,获得10
26秒前
nine2652完成签到 ,获得积分10
26秒前
gsji完成签到,获得积分10
27秒前
Yapi完成签到,获得积分10
28秒前
故酒应助Benhnhk21采纳,获得10
28秒前
韩hqf发布了新的文献求助10
29秒前
ShawnLyu应助甜甜的难敌采纳,获得10
35秒前
David完成签到 ,获得积分10
35秒前
lim应助chenmeimei2012采纳,获得10
36秒前
qty完成签到,获得积分10
38秒前
王饱饱完成签到 ,获得积分10
39秒前
Orange应助韩hqf采纳,获得10
41秒前
41秒前
感性的寄真完成签到 ,获得积分10
42秒前
43秒前
深情安青应助徐徐徐采纳,获得10
43秒前
和谐乐儿完成签到 ,获得积分10
44秒前
44秒前
可以的完成签到,获得积分10
45秒前
Yurrrrt完成签到,获得积分10
47秒前
我是大兴发布了新的文献求助10
48秒前
Youlu发布了新的文献求助10
49秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329880
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726