CrossDiff: Exploring Self-Supervised Representation of Pansharpening via Cross-Predictive Diffusion Model

人工智能 计算机科学 代表(政治) 扩散 模式识别(心理学) 计算机视觉 政治学 政治 热力学 物理 法学
作者
Yinghui Xing,Litao Qu,Shizhou Zhang,Kai Zhang,Yanning Zhang,Lorenzo Bruzzone
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5496-5509 被引量:8
标识
DOI:10.1109/tip.2024.3461476
摘要

Fusion of a panchromatic (PAN) image and corresponding multispectral (MS) image is also known as pansharpening, which aims to combine abundant spatial details of PAN and spectral information of MS images. Due to the absence of high-resolution MS images, available deep-learning-based methods usually follow the paradigm of training at reduced resolution and testing at both reduced and full resolution. When taking original MS and PAN images as inputs, they always obtain sub-optimal results due to the scale variation. In this paper, we propose to explore the self-supervised representation for pansharpening by designing a cross-predictive diffusion model, named CrossDiff. It has two-stage training. In the first stage, we introduce a cross-predictive pretext task to pre-train the UNet structure based on conditional Denoising Diffusion Probabilistic Model (DDPM). While in the second stage, the encoders of the UNets are frozen to directly extract spatial and spectral features from PAN and MS images, and only the fusion head is trained to adapt for pansharpening task. Extensive experiments show the effectiveness and superiority of the proposed model compared with state-of-the-art supervised and unsupervised methods. Besides, the cross-sensor experiments also verify the generalization ability of proposed self-supervised representation learners for other satellite datasets. Code is available at https://github.com/codgodtao/CrossDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
iuv完成签到,获得积分10
1秒前
1秒前
李庭福发布了新的文献求助20
2秒前
深情的城发布了新的文献求助10
3秒前
3秒前
秧秧发布了新的文献求助10
4秒前
4秒前
Jason完成签到,获得积分10
4秒前
纪亦竹完成签到,获得积分10
4秒前
tll发布了新的文献求助10
5秒前
juzi发布了新的文献求助10
5秒前
11235应助元子采纳,获得10
5秒前
随遇而安发布了新的文献求助10
6秒前
6秒前
hh完成签到 ,获得积分10
7秒前
7秒前
滑腻腻的小鱼完成签到 ,获得积分20
7秒前
HJK完成签到,获得积分10
8秒前
oi发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
Jason发布了新的文献求助10
10秒前
深情安青应助Alice采纳,获得10
10秒前
共享精神应助sun采纳,获得10
10秒前
悲凉的初翠完成签到,获得积分10
11秒前
12秒前
星辰完成签到,获得积分10
12秒前
blue发布了新的文献求助10
12秒前
LLJJLL完成签到 ,获得积分10
12秒前
无敌阿东完成签到,获得积分10
12秒前
13秒前
13秒前
可爱的函函应助猪猪hero采纳,获得10
13秒前
高挑的吐司完成签到,获得积分10
13秒前
jacob258发布了新的文献求助10
14秒前
wlscj应助害羞映容采纳,获得20
14秒前
小蘑菇应助Junzhuo Zhou采纳,获得10
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280