MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection

计算机科学 模态(人机交互) 语义学(计算机科学) 可解释性 模式 串联(数学) 特征(语言学) 人工智能 自然语言处理 情态动词 情报检索 语言学 哲学 社会科学 化学 数学 组合数学 社会学 高分子化学 程序设计语言
作者
Lianwei Wu,Yuzhou Long,Chao Gao,Zhen Wang,Yanning Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101944-101944 被引量:94
标识
DOI:10.1016/j.inffus.2023.101944
摘要

Fake news possesses a destructive and negative impact on our lives. With the rapid growth of multimodal content in social media communities, multimodal fake news detection has received increasing attention. Most existing approaches focus on learning the respective deep semantics of various modalities and integrating them by traditional fusion modes (like concatenation or addition, etc.) for improving detection performance, which has achieved a certain degree of success. However, they have two crucial issues: (1) Shallow cross-modal feature fusion, and (2) Difficulty in capturing inconsistent information. To this end, we propose Multimodal Fusion and Inconsistency Reasoning (MFIR) model to discover multimodal inconsistent semantics for explainable fake news detection. Specifically, MFIR consists of three modules: (1) Different from the traditional fusion modes, cross-modal infiltration fusion is designed, which is absorbed in continuously infiltrating and correlating another modality features into its internal semantics based on the current modality, which can well ensure the retention of the contextual semantics of the original modality; (2) Multimodal inconsistent learning not only captures the local inconsistent semantics from the perspectives of text and vision, but also integrates the two types of local semantics to discover global inconsistent semantics in multimodal content; (3) To enhance the interpretability of inconsistent semantics as evidence for users, we develop explanation reasoning layer to supplement the contextual information of inconsistent semantics, resulting in more understandable evidence semantics. Extensive experiments confirm the effectiveness of our model on three datasets and improved performance by up to 2.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Steven应助科研通管家采纳,获得10
刚刚
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Steven应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
kk99123应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
柏林寒冬完成签到,获得积分0
2秒前
TravelingLight完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
烟花弥漫发布了新的文献求助10
3秒前
FashionBoy应助阔达的音响采纳,获得10
4秒前
狂野傲珊发布了新的文献求助10
5秒前
5秒前
ssw完成签到,获得积分10
5秒前
重要沛蓝发布了新的文献求助10
7秒前
7秒前
ssw发布了新的文献求助10
8秒前
9秒前
苏满天完成签到,获得积分10
9秒前
Su发布了新的文献求助10
11秒前
zyt发布了新的文献求助10
13秒前
kaka完成签到,获得积分10
13秒前
tu完成签到,获得积分10
17秒前
xuhongfei完成签到,获得积分10
17秒前
Criminology34应助song采纳,获得10
18秒前
李昕123发布了新的文献求助20
19秒前
19秒前
多多完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5363606
求助须知:如何正确求助?哪些是违规求助? 4493116
关于积分的说明 13989456
捐赠科研通 4396779
什么是DOI,文献DOI怎么找? 2415080
邀请新用户注册赠送积分活动 1407807
关于科研通互助平台的介绍 1382623