NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星发布了新的文献求助10
1秒前
FashionBoy应助TianningSun采纳,获得10
1秒前
fei完成签到,获得积分10
1秒前
香蕉觅云应助李海涵采纳,获得10
2秒前
yanshapo完成签到,获得积分10
3秒前
梅子酒完成签到,获得积分10
5秒前
6秒前
fei发布了新的文献求助10
6秒前
是汐樾呀完成签到,获得积分10
6秒前
LiuSD发布了新的文献求助10
6秒前
8秒前
张浩威完成签到,获得积分10
9秒前
SHURT发布了新的文献求助10
9秒前
福桃完成签到,获得积分10
9秒前
结实抽屉完成签到,获得积分10
10秒前
Cherish应助Yancent采纳,获得50
11秒前
TianningSun发布了新的文献求助10
12秒前
12秒前
内向的初珍完成签到 ,获得积分20
13秒前
17秒前
李海涵发布了新的文献求助10
17秒前
17秒前
木穹完成签到,获得积分10
18秒前
soil完成签到,获得积分0
20秒前
冷笑完成签到,获得积分10
20秒前
22秒前
23秒前
大布发布了新的文献求助40
23秒前
24秒前
24秒前
谢谢各位大佬完成签到,获得积分10
27秒前
27秒前
咯噔完成签到,获得积分10
28秒前
SAN发布了新的文献求助10
28秒前
自觉水绿发布了新的文献求助10
29秒前
33秒前
yuaner完成签到,获得积分10
33秒前
小陆发布了新的文献求助10
34秒前
LYN完成签到,获得积分10
36秒前
李健的小迷弟应助SAN采纳,获得10
36秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867