Mechanism of internal thermal runaway propagation in blade batteries

热失控 传热 热的 热传导 热扩散率 扩散 对流 材料科学 机械 复合材料 物理 热力学 电池(电) 功率(物理)
作者
Xuning Feng,Fangshu Zhang,Wensheng Huang,Yong Peng,Chengshan Xu,Minggao Ouyang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:89: 184-194 被引量:44
标识
DOI:10.1016/j.jechem.2023.09.050
摘要

Blade batteries are extensively used in electric vehicles, but unavoidable thermal runaway is an inherent threat to their safe use. This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell. The results showed that the internal thermal runaway could propagate for up to 272 s, which is comparable to that of a traditional battery module. The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s−1, depending on both the electrolyte content and high-temperature gas diffusion. In the early stages of thermal runaway, the electrolyte participated in the reaction, which intensified the thermal runaway and accelerated its propagation. As the battery temperature increased, the electrolyte evaporated, which attenuated the acceleration effect. Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer. The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%. We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%–17.06%. Finally, the temperature rate curve was analyzed, and a three-stage mechanism for internal thermal runaway propagation was proposed. In Stage I, convective heat transfer from electrolyte evaporation locally increased the temperature to 100 °C. In Stage II, solid heat transfer locally increases the temperature to trigger thermal runaway. In Stage III, thermal runaway sharply increases the local temperature. The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marita发布了新的文献求助10
1秒前
sasa发布了新的文献求助10
1秒前
谨慎的大炮完成签到,获得积分10
2秒前
乐一完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
核桃发布了新的文献求助10
5秒前
7秒前
7秒前
wzq关闭了wzq文献求助
8秒前
王迪完成签到,获得积分10
9秒前
clearsky应助兴奋的菠萝采纳,获得20
10秒前
周繁发布了新的文献求助10
11秒前
ZZQ发布了新的文献求助10
11秒前
11秒前
eehbebha完成签到,获得积分20
11秒前
kk应助sasa采纳,获得10
12秒前
bingrui完成签到,获得积分10
12秒前
科研通AI6应助阳光的未来采纳,获得10
12秒前
xinyuxie应助山長采纳,获得10
13秒前
14秒前
14秒前
科研通AI5应助RL采纳,获得10
14秒前
zzz发布了新的文献求助10
14秒前
yoneyamai完成签到,获得积分10
15秒前
壹米完成签到,获得积分20
15秒前
15秒前
yamoon完成签到,获得积分10
16秒前
忙里偷闲完成签到,获得积分10
17秒前
麕麕完成签到 ,获得积分10
18秒前
Ava应助白纸采纳,获得10
19秒前
yangou完成签到,获得积分10
20秒前
20秒前
1111111111111发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
汉堡包应助三个句号采纳,获得10
21秒前
兴奋的菠萝完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676618
求助须知:如何正确求助?哪些是违规求助? 4054330
关于积分的说明 12537287
捐赠科研通 3748475
什么是DOI,文献DOI怎么找? 2070437
邀请新用户注册赠送积分活动 1099433
科研通“疑难数据库(出版商)”最低求助积分说明 979134