Mechanism of internal thermal runaway propagation in blade batteries

热失控 传热 热的 热传导 热扩散率 扩散 对流 材料科学 机械 复合材料 物理 热力学 电池(电) 功率(物理)
作者
Xuning Feng,Fangshu Zhang,Wensheng Huang,Yong Peng,Chengshan Xu,Minggao Ouyang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:89: 184-194 被引量:27
标识
DOI:10.1016/j.jechem.2023.09.050
摘要

Blade batteries are extensively used in electric vehicles, but unavoidable thermal runaway is an inherent threat to their safe use. This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell. The results showed that the internal thermal runaway could propagate for up to 272 s, which is comparable to that of a traditional battery module. The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s−1, depending on both the electrolyte content and high-temperature gas diffusion. In the early stages of thermal runaway, the electrolyte participated in the reaction, which intensified the thermal runaway and accelerated its propagation. As the battery temperature increased, the electrolyte evaporated, which attenuated the acceleration effect. Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer. The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%. We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%–17.06%. Finally, the temperature rate curve was analyzed, and a three-stage mechanism for internal thermal runaway propagation was proposed. In Stage I, convective heat transfer from electrolyte evaporation locally increased the temperature to 100 °C. In Stage II, solid heat transfer locally increases the temperature to trigger thermal runaway. In Stage III, thermal runaway sharply increases the local temperature. The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助热情孤丹采纳,获得10
2秒前
跳脚的虾完成签到 ,获得积分10
4秒前
7秒前
加和减完成签到,获得积分20
7秒前
善良的冷梅完成签到,获得积分10
9秒前
rrr关注了科研通微信公众号
10秒前
AMENG完成签到,获得积分10
10秒前
一屿完成签到,获得积分10
12秒前
沉静的元容完成签到,获得积分10
13秒前
坚定语蕊完成签到,获得积分10
15秒前
yKkkkkk完成签到 ,获得积分10
16秒前
科研小白给科研小白的求助进行了留言
17秒前
甜蜜冰颜完成签到,获得积分10
19秒前
19秒前
20秒前
成太完成签到,获得积分10
26秒前
SCI完成签到,获得积分10
26秒前
gyl完成签到 ,获得积分10
26秒前
28秒前
29秒前
成太发布了新的文献求助10
30秒前
34秒前
36秒前
Orange应助QQ采纳,获得10
36秒前
彭于晏应助heheha采纳,获得10
39秒前
默默的彩虹完成签到 ,获得积分10
42秒前
c—137Morty完成签到,获得积分10
42秒前
StH发布了新的文献求助30
43秒前
44秒前
科研通AI5应助科研通管家采纳,获得30
44秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
joker_k应助科研通管家采纳,获得10
44秒前
冰魂应助科研通管家采纳,获得10
44秒前
斯文败类应助科研通管家采纳,获得10
44秒前
烟花应助科研通管家采纳,获得10
44秒前
丘比特应助科研通管家采纳,获得10
44秒前
李爱国应助科研通管家采纳,获得10
45秒前
乐乐应助科研通管家采纳,获得10
45秒前
Cherish应助科研通管家采纳,获得10
45秒前
NPG应助科研通管家采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385