Recognition of Lower Limb Movements Using Machine Learning Methods and Bispectral Maps of Wireless sEMG Measurements

肌电图 人工智能 计算机科学 肱二头肌 随机森林 深度学习 卷积神经网络 模式识别(心理学) 机器学习 语音识别 物理医学与康复 医学
作者
K Arunganesh,G Nagarajan,N. Sivakumaran,P. A. Karthick
出处
期刊:IEEE sensors letters [Institute of Electrical and Electronics Engineers]
卷期号:7 (9): 1-4 被引量:5
标识
DOI:10.1109/lsens.2023.3307108
摘要

In this letter, an attempt is made to develop a movement recognition framework for the classification of five locomotion activities using bispectral representation of wireless surface electromyography (sEMG) measurements and machine learning classifiers. For this purpose, wireless sEMG signals are recorded during locomotive activities, namely, level ground walking, ramp up, ramp down, stair up, and stair down from six muscles of the lower limbs, namely gastrocnemius, semitendinosus, rectus femoris, biceps femoris, tibialis anterior, and vastus lateralis. Nine features, namely variance, root mean square, integrated EMG, mean absolute value, waveform length, Willison amplitude, skewness, entropy, and zero-crossing, are extracted from the recorded sEMG. Tree-based machine learning approaches namely random forest and extreme gradient boosting (XG Boost) are employed to classify lower limb movements. Moreover, we explore the synergy of bispectral maps from sEMG data with deep learning models to enhance the discrimination of lower limb activities. The proposed approach effectively discriminates various lower limb movements. The evaluation of machine learning models demonstrates promising results, with random forest and XG Boost achieving notable accuracy rates. Notably, the convolutional neural network model outperforms others with a testing accuracy of 91.33%, closely followed by the visual geometry group with 16 layers model at 89.9%. The results indicate the potential utility of the proposed approach in leg-machine interface development and rehabilitation for lower limb amputees. This research contributes to the advancement of movement recognition technology, offering valuable insights for biomedical engineering and rehabilitation sciences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
王大包子发布了新的文献求助10
刚刚
1秒前
活泼的海豚完成签到,获得积分10
1秒前
煜琪发布了新的文献求助10
1秒前
lilivite完成签到,获得积分0
1秒前
fd163c发布了新的文献求助30
2秒前
科目三应助真正的man采纳,获得10
2秒前
还好发布了新的文献求助10
3秒前
GoGoGo完成签到,获得积分10
4秒前
憨憨发布了新的文献求助10
4秒前
朴素懿轩完成签到,获得积分10
4秒前
landiao发布了新的文献求助10
4秒前
无极微光应助聪明的血茗采纳,获得20
5秒前
7秒前
ALALEI发布了新的文献求助10
8秒前
Ava应助6wdhw采纳,获得10
8秒前
8秒前
8秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
lili发布了新的文献求助10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得30
10秒前
ding应助科研通管家采纳,获得10
10秒前
yuan应助科研通管家采纳,获得10
10秒前
landiao完成签到,获得积分10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得20
10秒前
脑洞疼应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492786
求助须知:如何正确求助?哪些是违规求助? 4590743
关于积分的说明 14431959
捐赠科研通 4523251
什么是DOI,文献DOI怎么找? 2478238
邀请新用户注册赠送积分活动 1463283
关于科研通互助平台的介绍 1436014