Machine Learning Algorithms for Predicting Mechanical Stiffness of Lattice Structure-Based Polymer Foam

材料科学 复合材料 刚度 格子(音乐) 聚合物 算法 计算机科学 机械工程 工程类 物理 声学
作者
Mohammad Javad Hooshmand,Chowdhury Sakib-Uz-Zaman,Mohammad Abu Hasan Khondoker
出处
期刊:Materials [MDPI AG]
卷期号:16 (22): 7173-7173 被引量:21
标识
DOI:10.3390/ma16227173
摘要

Polymer foams are extensively utilized because of their superior mechanical and energy-absorbing capabilities; however, foam materials of consistent geometry are difficult to produce because of their random microstructure and stochastic nature. Alternatively, lattice structures provide greater design freedom to achieve desired material properties by replicating mesoscale unit cells. Such complex lattice structures can only be manufactured effectively by additive manufacturing or 3D printing. The mechanical properties of lattice parts are greatly influenced by the lattice parameters that define the lattice geometries. To study the effect of lattice parameters on the mechanical stiffness of lattice parts, 360 lattice parts were designed by varying five lattice parameters, namely, lattice type, cell length along the X, Y, and Z axes, and cell wall thickness. Computational analyses were performed by applying the same loading condition on these lattice parts and recording corresponding strain deformations. To effectively capture the correlation between these lattice parameters and parts’ stiffness, five machine learning (ML) algorithms were compared. These are Linear Regression (LR), Polynomial Regression (PR), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). Using evaluation metrics such as mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE), all ML algorithms exhibited significantly low prediction errors during the training and testing phases; however, the Taylor diagram demonstrated that ANN surpassed other algorithms, with a correlation coefficient of 0.93. That finding was further supported by the relative error box plot and by comparing actual vs. predicted values plots. This study revealed the accurate prediction of the mechanical stiffness of lattice parts for the desired set of lattice parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸鱼发布了新的文献求助10
1秒前
阳光新筠应助claud采纳,获得30
1秒前
松屿完成签到,获得积分10
2秒前
misong完成签到,获得积分10
2秒前
漫迷漫完成签到,获得积分10
2秒前
lab发布了新的文献求助10
4秒前
lingyan完成签到,获得积分20
4秒前
4秒前
传奇3应助xyhua925采纳,获得10
5秒前
拼搏剑心完成签到 ,获得积分10
6秒前
bold完成签到,获得积分10
6秒前
小陶发布了新的文献求助10
6秒前
松屿发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
9秒前
9秒前
Aimeee发布了新的文献求助10
9秒前
阿托品发布了新的文献求助10
9秒前
10秒前
10秒前
雪白煜城完成签到,获得积分10
10秒前
11秒前
努力的学完成签到,获得积分10
12秒前
Akim应助淡然的镜子采纳,获得10
12秒前
1000发布了新的文献求助10
12秒前
坚强谷雪发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
nalanwude完成签到,获得积分10
13秒前
13秒前
武雨寒发布了新的文献求助10
14秒前
15秒前
Fan发布了新的文献求助10
15秒前
TUUBBZZ发布了新的文献求助10
15秒前
二三发布了新的文献求助10
16秒前
莫之白发布了新的文献求助10
17秒前
离开后的心碎完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600339
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841190
捐赠科研通 4676319
什么是DOI,文献DOI怎么找? 2538694
邀请新用户注册赠送积分活动 1505750
关于科研通互助平台的介绍 1471186