Got (Optimal) Milk? Pooling Donations in Human Milk Banks with Machine Learning and Optimization

联营 捐赠 人工智能 计算机科学 运筹学 业务 经济 数学 经济增长
作者
Timothy C. Y. Chan,Rafid Mahmood,Deborah L. O’Connor,Debbie Stone,Sharon Unger,Rachel K. Wong,Ian Yihang Zhu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/msom.2022.0455
摘要

Problem definition: Human donor milk provides critical nutrition for millions of infants who are born preterm each year. Donor milk is collected, processed, and distributed by milk banks. The macronutrient content of donor milk is directly linked to infant brain development and can vary substantially across donations, which is why multiple donations are typically pooled together to create a final product. Approximately half of all milk banks in North America do not have the resources to measure the macronutrient content of donor milk, which means pooling is done heuristically. For these milk banks, an approach is needed to optimize pooling decisions. Methodology/results: We propose a data-driven framework combining machine learning and optimization to predict macronutrient content of donations and then optimally combine them in pools, respectively. In collaboration with our partner milk bank, we collect a data set of milk to train our predictive models. We rigorously simulate milk bank practices to fine-tune our optimization models and evaluate operational scenarios such as changes in donation habits during the COVID-19 pandemic. Finally, we conduct a year-long trial implementation, where we observe the current nurse-led pooling practices followed by our intervention. Pools created by our approach meet clinical macronutrient targets approximately 31% more often than the baseline, although taking 60% less recipe creation time. Managerial implications: This is the first paper in the broader blending literature that combines machine learning and optimization. We demonstrate that such pipelines are feasible to implement in a healthcare setting and can yield significant improvements over current practices. Our insights can guide practitioners in any application area seeking to implement machine learning and optimization-based decision support. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.0455 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莽哥完成签到,获得积分10
1秒前
Quentin9998发布了新的文献求助10
1秒前
why完成签到 ,获得积分10
2秒前
科研通AI2S应助WYN采纳,获得10
3秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
SAXA完成签到,获得积分10
6秒前
你还是要加油完成签到,获得积分10
6秒前
FOCUS完成签到 ,获得积分10
8秒前
8秒前
666完成签到,获得积分10
9秒前
JY'完成签到,获得积分0
10秒前
夜雨清痕y完成签到,获得积分10
11秒前
李爱国应助hss采纳,获得10
12秒前
bc应助美好雁荷采纳,获得30
12秒前
cipherblaze发布了新的文献求助10
13秒前
7185045完成签到,获得积分10
14秒前
万能图书馆应助Quentin9998采纳,获得10
15秒前
爆米花应助666采纳,获得10
16秒前
LWJ完成签到 ,获得积分10
16秒前
1364135702完成签到 ,获得积分10
20秒前
lianqing完成签到,获得积分10
20秒前
爆米花应助落寞凌柏采纳,获得10
20秒前
动漫大师发布了新的文献求助10
22秒前
22秒前
23秒前
小天发布了新的文献求助10
24秒前
善学以致用应助liaomr采纳,获得10
24秒前
旋转木马9个完成签到 ,获得积分10
25秒前
cannon8应助智智采纳,获得20
26秒前
单纯乞完成签到,获得积分10
27秒前
28秒前
余晖霞光完成签到 ,获得积分10
28秒前
小天完成签到,获得积分10
31秒前
32秒前
搞怪的紫雪完成签到,获得积分10
32秒前
Quentin9998发布了新的文献求助10
32秒前
lalala发布了新的文献求助10
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734