Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population

骨量减少 医学 骨质疏松症 射线照相术 接收机工作特性 骨矿物 物理疗法 核医学 放射科 内科学
作者
Liting Mao,Ziqiang Xia,Liang Pan,Jun Chen,Xian Liu,Zhiqiang Li,Zhaoxian Yan,Gengbin Lin,Huisen Wen,Bo Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:13 被引量:18
标识
DOI:10.3389/fendo.2022.971877
摘要

Purpose Many high-risk osteopenia and osteoporosis patients remain undiagnosed. We proposed to construct a convolutional neural network model for screening primary osteopenia and osteoporosis based on the lumbar radiographs, and to compare the diagnostic performance of the CNN model adding the clinical covariates with the image model alone. Methods A total of 6,908 participants were collected for analysis, including postmenopausal women and men aged 50–95 years, who performed conventional lumbar x-ray examinations and dual-energy x-ray absorptiometry (DXA) examinations within 3 months. All participants were divided into a training set, a validation set, test set 1, and test set 2 at a ratio of 8:1:1:1. The bone mineral density (BMD) values derived from DXA were applied as the reference standard. A three-class CNN model was developed to classify the patients into normal BMD, osteopenia, and osteoporosis. Moreover, we developed the models integrating the images with clinical covariates (age, gender, and BMI), and explored whether adding clinical data improves diagnostic performance over the image mode alone. The receiver operating characteristic curve analysis was performed for assessing the model performance. Results As for classifying osteoporosis, the model based on the anteroposterior+lateral channel performed best, with the area under the curve (AUC) range from 0.909 to 0.937 in three test cohorts. The models with images alone achieved moderate sensitivity in classifying osteopenia, in which the highest AUC achieved 0.785. The performance of models integrating images with clinical data shows a slight improvement over models with anteroposterior or lateral images input alone for diagnosing osteoporosis, in which the AUC increased about 2%–4%. Regarding categorizing osteopenia and the normal BMD, the proposed models integrating images with clinical data also outperformed the models with images solely. Conclusion The deep learning-based approach could screen osteoporosis and osteopenia based on lumbar radiographs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc应助zzZ5采纳,获得30
1秒前
慕青应助小猪佩奇采纳,获得10
2秒前
不怕考试的赵无敌完成签到 ,获得积分10
2秒前
扒开皮皮发布了新的文献求助10
3秒前
归羽关注了科研通微信公众号
4秒前
文迪发布了新的文献求助10
5秒前
5秒前
唐唐完成签到 ,获得积分10
5秒前
zjx123完成签到,获得积分10
8秒前
acid_发布了新的文献求助10
10秒前
zhoull完成签到,获得积分10
11秒前
不倦应助与桉采纳,获得10
11秒前
11秒前
油菜籽完成签到 ,获得积分10
12秒前
敏感的寄凡完成签到,获得积分10
12秒前
bc应助melody采纳,获得10
13秒前
健壮的花瓣完成签到 ,获得积分10
14秒前
Catfish完成签到,获得积分10
14秒前
汉堡包应助小喵采纳,获得10
15秒前
小猪佩奇发布了新的文献求助10
15秒前
科研菜鸡完成签到,获得积分10
16秒前
自由的雁完成签到 ,获得积分10
16秒前
英姑应助acid_采纳,获得10
18秒前
18秒前
19秒前
小喵完成签到,获得积分20
19秒前
晨光中完成签到,获得积分10
22秒前
zhoull发布了新的文献求助10
23秒前
hkh完成签到,获得积分10
24秒前
25秒前
bc应助墨月白采纳,获得60
26秒前
毛毛完成签到,获得积分20
29秒前
时尚的飞机完成签到,获得积分10
30秒前
Iiirds完成签到 ,获得积分10
31秒前
36秒前
Xxxuan完成签到,获得积分10
39秒前
Iiiilr完成签到 ,获得积分10
41秒前
我爱科研完成签到 ,获得积分10
42秒前
哈哈哈完成签到,获得积分10
43秒前
墨月白完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275