Dual-Recommendation Disentanglement Network for View Fuzz in Action Recognition

计算机科学 代表(政治) 杠杆(统计) 人工智能 动作(物理) 对偶(语法数字) 模糊逻辑 编码(集合论) 动作识别 机器学习 程序设计语言 法学 政治学 政治 量子力学 集合(抽象数据类型) 文学类 物理 班级(哲学) 艺术
作者
Wenxuan Liu,Xian Zhong,Zhuo Zhou,Kui Jiang,Zheng Wang,Chia‐Wen Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2719-2733 被引量:3
标识
DOI:10.1109/tip.2023.3273459
摘要

Multi-view action recognition aims to identify action categories from given clues. Existing studies ignore the negative influences of fuzzy views between view and action in disentangling, commonly arising the mistaken recognition results. To this end, we regard the observed image as the composition of the view and action components, and give full play to the advantages of multiple views via the adaptive cooperative representation among these two components, forming a Dual-Recommendation Disentanglement Network (DRDN) for multi-view action recognition. Specifically, 1) For the action, we leverage a multi-level Specific Information Recommendation (SIR) to enhance the interaction among intricate activities and views. SIR offers a more comprehensive representation of activities, measuring the trade-off between global and local information. 2) For the view, we utilize a Pyramid Dynamic Recommendation (PDR) to learn a complete and detailed global representation by transferring features from different views. It is explicitly restricted to resist the fuzzy noise influence, focusing on positive knowledge from other views. Our DRDN aims for complete action and view representation, where PDR directly guides action to disentangle with view features and SIR considers mutual exclusivity of view and action clues. Extensive experiments have indicated that the multi-view action recognition method DRDN we proposed achieves state-of-the-art performance over powerful competitors on several standard benchmarks. The code will be available at https://github.com/51cloud/DRDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
刚刚
HD完成签到,获得积分10
刚刚
刚刚
祖金杰发布了新的文献求助10
1秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
W1996发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
欣喜季节关注了科研通微信公众号
2秒前
2秒前
heavenhorse应助科研通管家采纳,获得20
2秒前
情怀应助明天肯定学习采纳,获得10
2秒前
HEAUBOOK应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
HEAUBOOK应助科研通管家采纳,获得10
2秒前
鼠小姐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得30
3秒前
iNk应助科研通管家采纳,获得20
3秒前
HEAUBOOK应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
HEAUBOOK应助科研通管家采纳,获得10
3秒前
vv应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
KKKK发布了新的文献求助10
4秒前
JamesPei应助喻白采纳,获得10
4秒前
hhh发布了新的文献求助10
5秒前
璃月品茶钟离完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
8秒前
champagne完成签到,获得积分10
8秒前
lwy同学发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807374
求助须知:如何正确求助?哪些是违规求助? 3352125
关于积分的说明 10357380
捐赠科研通 3068170
什么是DOI,文献DOI怎么找? 1684876
邀请新用户注册赠送积分活动 809979
科研通“疑难数据库(出版商)”最低求助积分说明 765840