Identification of geographic origins of Morus alba Linn. through surfaced enhanced Raman spectrometry and machine learning algorithms

算法 人工智能 成分 鉴定(生物学) 机器学习 传统医学 植物 生物 计算机科学 食品科学 医学
作者
Zhang-Wen Ma,Jia-Wei Tang,Qinghua Liu,Jing-Yi Mou,Rui Qiao,Yan Du,Changyu Wu,Daoquan Tang,Liang Wang
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:41 (23): 14285-14298 被引量:12
标识
DOI:10.1080/07391102.2023.2180433
摘要

The leaves of Morus alba Linn., which is also known as white mulberry, have been commonly used in many of traditional systems of medicine for centuries. In traditional Chinese medicine (TCM), mulberry leaf is mainly used for anti-diabetic purpose due to its enrichment in bioactive compounds such as alkaloids, flavonoids and polysaccharides. However, these components are variable due to the different habitats of the mulberry plant. Therefore, geographic origin is an important feature because it is closely associated with bioactive ingredient composition that further influences medicinal qualities and effects. As a low-cost and non-invasive method, surface enhanced Raman spectrometry (SERS) is able to generate the overall fingerprints of chemical compounds in medicinal plants, which holds the potential for the rapid identification of their geographic origins. In this study, we collected mulberry leaves from five representative provinces in China, namely, Anhui, Guangdong, Hebei, Henan and Jiangsu. SERS spectrometry was applied to characterize the fingerprints of both ethanol and water extracts of mulberry leaves, respectively. Through the combination of SERS spectra and machine learning algorithms, mulberry leaves were well discriminated with high accuracies in terms of their geographic origins, among which the deep learning algorithm convolutional neural network (CNN) showed the best performance. Taken together, our study established a novel method for predicting the geographic origins of mulberry leaves through the combination of SERS spectra with machine learning algorithms, which strengthened the application potential of the method in the quality evaluation, control and assurance of mulberry leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到 ,获得积分10
刚刚
姜一笑完成签到,获得积分10
刚刚
李钟硕完成签到,获得积分10
2秒前
舒服的曼云完成签到,获得积分10
2秒前
合适惜筠完成签到,获得积分10
3秒前
结实的丹雪完成签到,获得积分10
3秒前
my完成签到,获得积分10
4秒前
5秒前
大道要熬发布了新的文献求助10
5秒前
自觉语琴完成签到 ,获得积分10
5秒前
CNJX完成签到,获得积分10
6秒前
6秒前
Kestis.完成签到,获得积分10
7秒前
朱华彪完成签到,获得积分10
7秒前
xudongmei完成签到,获得积分10
7秒前
谦让的含海完成签到,获得积分10
7秒前
亲爱的桃乐茜完成签到 ,获得积分10
8秒前
8秒前
温柔的蛋挞完成签到,获得积分10
9秒前
chhzz完成签到 ,获得积分10
9秒前
Anlionseas完成签到,获得积分10
9秒前
小白完成签到,获得积分10
10秒前
10秒前
QQLL完成签到,获得积分10
11秒前
GingerF应助重要的易梦采纳,获得50
12秒前
量子星尘发布了新的文献求助10
14秒前
ZZQ完成签到,获得积分10
14秒前
默默白开水完成签到 ,获得积分10
15秒前
体贴的若发布了新的文献求助10
15秒前
16秒前
糖糖糖唐完成签到,获得积分10
16秒前
纯真含灵完成签到,获得积分10
16秒前
在水一方应助arniu2008采纳,获得10
16秒前
小杨完成签到 ,获得积分10
16秒前
17秒前
18秒前
盼盼完成签到,获得积分10
18秒前
zhao完成签到,获得积分10
19秒前
ylyao完成签到,获得积分10
19秒前
kalani完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4845024
求助须知:如何正确求助?哪些是违规求助? 4145148
关于积分的说明 12834271
捐赠科研通 3891882
什么是DOI,文献DOI怎么找? 2139367
邀请新用户注册赠送积分活动 1159329
关于科研通互助平台的介绍 1060063