已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RESEAT: Recurrent Self-Attention Network for Multi-Regional Influenza Forecasting

计算机科学 循环神经网络 人工智能 超参数 机器学习 深度学习 人工神经网络 任务(项目管理) 管理 经济
作者
Jaeuk Moon,Seungwon Jung,Sungwoo Park,Eenjun Hwang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2585-2596 被引量:4
标识
DOI:10.1109/jbhi.2023.3247687
摘要

Early forecasting of influenza is an important task for public health to reduce losses due to influenza. Various deep learning-based models for multi-regional influenza forecasting have been proposed to forecast future influenza occurrences in multiple regions. While they only use historical data for forecasting, temporal and regional patterns need to be jointly considered for better accuracy. Basic deep learning models such as recurrent neural networks and graph neural networks have limited ability to model both patterns together. A more recent approach uses an attention mechanism or its variant, self-attention. Although these mechanisms can model regional interrelationships, in state-of-the-art models, they consider accumulated regional interrelationships based on attention values that are calculated only once for all of the input data. This limitation makes it difficult to effectively model the regional interrelationships that change dynamically during that period. Therefore, in this article, we propose a recurrent self-attention network (RESEAT) for various multi-regional forecasting tasks such as influenza and electrical load forecasting. The model can learn regional interrelationships over the entire period of the input data using self-attention, and it recurrently connects the attention weights using message passing. We demonstrate through extensive experiments that the proposed model outperforms other state-of-the-art forecasting models in terms of the forecasting accuracy for influenza and COVID-19. We also describe how to visualize regional interrelationships and analyze the sensitivity of hyperparameters to forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mol发布了新的文献求助10
刚刚
哇咔咔完成签到 ,获得积分10
1秒前
矜天完成签到 ,获得积分10
2秒前
2秒前
还是速度点关注了科研通微信公众号
4秒前
ru完成签到,获得积分10
5秒前
NEM嬛嬛驾到完成签到,获得积分10
5秒前
jinyue完成签到 ,获得积分10
6秒前
9秒前
Corn_Dog完成签到,获得积分10
9秒前
Zone完成签到 ,获得积分10
11秒前
12秒前
Zz完成签到 ,获得积分10
13秒前
TenerifeSea发布了新的文献求助10
14秒前
这学真难读下去完成签到,获得积分10
15秒前
huxuehong完成签到 ,获得积分10
15秒前
浮游应助nmt采纳,获得10
16秒前
英俊的铭应助爱听歌笑寒采纳,获得10
17秒前
啦啦啦啦完成签到,获得积分10
19秒前
重要丹蝶完成签到,获得积分20
20秒前
研友_VZG7GZ应助TenerifeSea采纳,获得10
21秒前
21秒前
勤劳平彤完成签到,获得积分10
21秒前
22秒前
苏子墨完成签到,获得积分10
22秒前
快乐的笑阳完成签到,获得积分10
24秒前
25秒前
星辰大海应助强健的迎波采纳,获得10
25秒前
25秒前
28秒前
29秒前
yuebaoji发布了新的文献求助30
30秒前
31秒前
靖柔完成签到 ,获得积分10
31秒前
cc完成签到 ,获得积分10
32秒前
bare发布了新的文献求助10
34秒前
刀疤尤金发布了新的文献求助10
35秒前
快乐友灵完成签到,获得积分10
36秒前
研友_5Y9Z75完成签到 ,获得积分0
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469870
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337487
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465296
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259